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Automata on Finite Words

• You all know it, but…
we will not be speaking of them
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Words that end with an ‘a’L(A) =

A

aq0

a,b

q1

a



Automata on Infinite Words

• Automata on infinite words were introduced in the 60’s, in 
the course of solving fundamental decision problems in logic.

• Nowadays, they are widely used in formal verification and 
synthesis of nonterminating (reactive) systems.

3

But, how do we define the acceptance condition?

L(A) = ?
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aq0

a,b

q1

a



1962,

Many Automata Types

Büchi
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Co-Büchi
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Weak Parity
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Büchi Automata
(By Julius Büchi in 1962)

• There is a set of accepting states.

• A run is accepting if it visits some accepting state 
infinitely often.

• A word is accepted if there is an accepting run on it.

L(B ) = Finitely many b’s
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Rabin Automata
(By Michael Rabin in 1969)

• A run r is accepting if exists an accepting pair ⟨B,G⟩, 
such that r visits B finitely often and G infinitely often.

b
a

qa

a

Acceptance condition:

R
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qb

b

qc

a b cc

c

⟨{qa}, {qb,qc}⟩;
⟨{qb}, {qa}⟩

Bad  Good



Streett Automata
(By Robert Streett in 1982)

• A run r is accepting if for every pair ⟨B,G⟩, r visits B 
finitely often or G infinitely often.

b
a

qa

a

Acceptance condition:

S
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qb

b

qc

a b cc

c

⟨{qb,qc}, {qa}⟩;
⟨{qa}, {qb}⟩

Bad  Good



Why These Automata Types?
Can’t we do with one good acceptance condition?
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Büchi

Rabin

Muller

I’m so simple.

Easy emptiness check, 
intersection, …

Your deterministic version 
is not strong enough.

I am the most detailed.

Too many 
details.

I am 
sophisticated.



Why These Automata Types?
Do we need more acceptance conditions?
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What?!

Co-BüchiWeak

Parity



Why These Automata Types?

[Kurshan, 1994]: “The choice of automaton type to use in 
connection with formal verification is governed by two 
issues: syntactic suitability and computational complexity.”
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Everything is for 

historical reasons

So, why did these types 
survive the test of time, 
while others did not?



The Plan
We analyze the classic types by their: 
• Connection to other formalisms
• Expressiveness
• Succinctness (with respect to each other and to arbitrary types)
• Complexity of decision problems
• Size blowup involved in boolean operations

We answer whether:
• It is justified to use them all
• There is a need for additional types

Classic types: Weak, Büchi, co-Büchi, parity, Rabin, Streett, Muller
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Spoilers:
Yes
Yes



Analysis of the Classic Types
• Connection to other formalisms

All are well connected…

• Expressiveness
Clear picture

• Succinctness
Organize and almost complete

• Decision problems
Clear picture

• Boolean operations
We complete the picture
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Well known

Well known

Partially known 
Quite a mess

Well known

Partially known
(as of 2018)



Connection to Other Formalisms
The different types are related to various aspects of formal 
verification, to various logics, and other formalisms.

For example:
• Weak: Linear temporal logic, alternation free mu-calculus
• Büchi and Co-Büchi : Fairness
• Parity: Mu-calculus
• Rabin and Streett: Strong fairness, memoryless strategies
• Muller: Wagner hierarchy
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Expressiveness

Nondeterministic
Weak  co-Büchi  Büchi  parity  Rabin  Streett  Muller
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𝜔-regular complete

Deterministic
Weak  co-Büchi  Büchi  parity  Rabin  Streett  Muller

weaker



Succinctness – Between Them
• Due to the advantages and disadvantages of each type, there 

is a rich literature on the translations between them.
� Starting in the 60s and continuing until these days.

• But, the literature is inconsistent and incomplete.
� There is inconsistency in the view of the automaton size.
� There are “only” 175 non-self translations between them.
• A problem to find the data.
• Some translation-bounds are still missing.
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Automaton Elements

An automaton has:
• Alphabet
• States
• Transitions
• Acceptance condition (Index)

• All results on the translations between automata, when 
speaking of size, take into account the number of states.

• Yet, some ignore the alphabet, and others ignore the index.
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Automaton Size

We define:

Size = max(alphabet, states, transitions, index)
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The source and target automaton share the same alphabet.
Ideally:
•Upper bounds over arbitrary alphabets
•Lower bounds over a fixed alphabet (i.e., of a constant size) 
It indeed works, eliminating the alphabet influence.



Automaton Size

We define:

Size = max(alphabet, states, transitions, index)
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• For deterministic automata, the number of transitions is 
bounded by States × Alphabet.

• For nondeterministic automata, the number of transitions is 
bounded by States × States × Alphabet.

Furthermore, it turns out that the transition blowup goes hand 
in hand with the state blowup.



Automaton Size

We define:

Size = max(alphabet, states, transitions, index)
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We demonstrate next that the number of states and the index
are both important and moreover − interconnected.
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Streett ➠ Rabin

• Inevitable State Blowup: Quadratic

• Inevitable Index Blowup: Constant

Yet,

• Inevitable Size Blowup: Exponential

n states
Index n 2n states; Index 1

or

n2 states

Index 2n

(From 
FSTTCS
2017)

Or something in between them



Automaton Size

We define:

Size = max(alphabet, states, transitions, index)
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Moral:
• The state blowup is important

but
• The size blowup is also important



Succinctness – Between Them

A web site with all results:

http://www.faculty.idc.ac.il/udiboker/automata

State blowup and Size blowup
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Succinctness – W.r.t. Arbitrary Types

• Proposition: For every 𝜔-regular nondet. automaton of size 
n, there is an equivalent nondet. Büchi automaton of size 

2O(n) and an equivalent det. parity automaton of size 22O(n).

• [Safra & Vardi, 89]: There is a family An of 𝜔-regular 
automata of size n, such that every 𝜔-regular automaton for 
the complement of An has at least 22n states. 

• Conclusion: The classic types (except for Muller) provide a 
reasonable tradeoff between succinctness and blowup of 
determinization and complementation, having all of them 
singly exponential.
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Decision Problems
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Nonemptiness Universality

Weak
Linear time

PSPACE-Complete

Co-Büchi

Büchi

Parity

PTIME
Rabin

Streett

Muller



Boolean Operations
Nondeterministic automata
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Union Intersect. Complement.

Weak

Linear Polynomial Exponential

Co-Büchi

Büchi

Parity

Rabin

Streett

Muller ? ?

• The question marks stand for open as of 2018. 



Boolean Operations
Nondeterministic automata
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Union Intersect. Complement.

Weak

Linear Polynomial Exponential

Co-Büchi

Büchi

Parity

Rabin

Streett

Muller Exponential Double-Exp

• Muller automata are great for theoretical purposes
• Not suitable for practical implementation



Boolean Operations
Deterministic automata

27

Union Intersect. Complement.

Weak

Co-Büchi

Büchi

Parity

Rabin

Streett

Muller

Not 
𝜔-regular 
complete



Boolean Operations
Deterministic automata
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Union Intersect. Complement.

Weak
Quadratic

No blowup

Co-Büchi No blowup
(if possible)Büchi

Parity

Rabin

Streett

Muller

Not 
𝜔-regular 
complete



Boolean Operations
Deterministic automata
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Union Intersect. Complement.

Weak
Quadratic

No blowup

Co-Büchi No blowup
(if possible)Büchi

Parity No blowup

Rabin
ExponentialStreett

Muller

Not 
𝜔-regular 
complete



Boolean Operations
Deterministic automata
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Union Intersect. Complement.

Weak
Quadratic

No blowup

Co-Büchi No blowup
(if possible)Büchi

Parity ? ? No blowup

Rabin Quadratic ?
ExponentialStreett ? Quadratic

Muller ? ?

Not 
𝜔-regular 
complete

• Deterministic automata are not necessary for model checking
• Required in synthesis and probabilistic model checking



Boolean Operations
Deterministic automata
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Union Intersect. Complement.

Weak
Quadratic

No blowup

Co-Büchi No blowup
(if possible)Büchi

Parity Exponential No blowup

Rabin Quadratic Exponential
ExponentialStreett Exponential Quadratic

Muller Exponential

Not 
𝜔-regular 
complete



Boolean Operations
Deterministic automata
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Union Intersect. Complement.

Weak
Quadratic

No blowup

Co-Büchi No blowup
(if possible)Büchi

Parity Exponential No blowup

Rabin Quadratic Exponential
ExponentialStreett Exponential Quadratic

Muller Exponential

Not 
𝜔-regular 
complete



Positive Boolean Operations
𝜔-regular-complete deterministic automata
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Union Intersect.

Parity Exponential

Rabin Quadratic Exponential

Streett Exponential Quadratic

Muller Exponential

• Deterministic automata are required nowadays
• Union and intersection are very useful for compound systems
• They involve an exponential size blowup in all the 𝜔-regular-

complete classic automata
Is an exponential blowup inevitable?



Positive Boolean Operations
𝜔-regular-complete deterministic automata
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Is an exponential blowup inevitable?
No

How?
Using stronger acceptance conditions

Does it worth it?
Seems so



Emerson-Lei 
Automata
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• Introduced in 1985 by Allen Emerson and Chin-Laung Lei
• Some popularity shortly after; Less popular afterwards
• Regained popularity in the past seven years
• Acceptance condition: a boolean formula over Fin(S), Inf (S).

� S is an arbitrary set of states.
� Fin(S) / Inf (S) means that S is visited finitely/infinitely often

• Generalizes the other conditions
� Büchi:

� Rabin: 



Emerson-Lei Automata
Pros
• A very flexible acceptance condition
• Boolean operations on deterministic automata are trivial

Cons
• For nondeterministic automata: Doubly-exponential 

complementation and determinization
• In general: Nonemptiness check is NP-complete

Bottom line
• Interesting in some settings
• Often too much of a price for the extra flexibility
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Some other (re)New(ed) Types
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• Generalized-Rabin [J. Kretínský and J. Esparza, 2012] :

• Hyper-Rabin (“canonical form” in [Emerson&Lei, 1987]):

• Generalized-Streett [F. Blahoudek, 2012]:

• Hyper-Streett:

Thm. Hyper-Rabin/Streett generalize all the classic conditions; 
There is an exponential size blowup in the other direction, for 
deterministic automata.

The Hyper-
further generalize 
the Generalized-.



Connection to Verification
• The generalized- and hyper-Rabin conditions naturally occur 

in the translation of various fragments of LTL into automata. 
� [K. Chatterjee, A. Gaiser, J. Kretínský, 2012];

[J. Esparza, J. Kretínský, Sickert, 2016]

• The generalized- and hyper-Streett conditions naturally occur 
in n-player omega-regular games.
� [E. Filiot, R. Gentilini, J. F. Raskin, 2018]
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Costs
Deterministic automata
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Union Intersect. Complement. Nonemptiness

Hyper-Rabin

Hyper-Streett

Emerson-Lei Quadratic No blowup NP-Complete

• Generalized-Rabin/Streett have the same costs as Hyper-
Rabin/Streett. 



Costs
Deterministic automata
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Union Intersect. Complement. Nonemptiness

Hyper-Rabin
QuadraticHyper-Streett

Emerson-Lei No blowup NP-Complete

• Generalized-Rabin/Streett have the same costs as Hyper-
Rabin/Streett. 



Costs
Deterministic automata
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Union Intersect. Complement. Nonemptiness

Hyper-Rabin
Quadratic Exponential

Hyper-Streett

Emerson-Lei No blowup NP-Complete

• Generalized-Rabin/Streett have the same costs as Hyper-
Rabin/Streett. 



Costs
Deterministic automata
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Union Intersect. Complement. Nonemptiness

Hyper-Rabin
Quadratic Exponential

PTIME

Hyper-Streett
NP-Complete

Emerson-Lei No blowup

• Generalized-Rabin/Streett have the same costs as Hyper-
Rabin/Streett. 

So: Hyper-Rabin has great potential for compound systems.
� Already partially fulfilled with generalized-Rabin

[K. Chatterjee, A. Gaiser, J. Kretínský, 2012];
[J. Esparza, J. Kretínský, Sickert, 2016]



Costs
Deterministic automata
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Union Intersect. Complement. Nonemptiness

Hyper-Rabin
Quadratic Exponential

PTIME

Hyper-Streett
NP-Complete

Emerson-Lei No blowup

But, can we hope for more?



Costs
Deterministic automata
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Union Intersect. Complement. Nonemptiness

Hyper-Rabin
Quadratic Exponential

PTIME

Hyper-Streett
NP-Complete

Emerson-Lei No blowup

? Polynomial PTIME

But, can we hope for more?

A deterministic automaton type that allows for polynomial 
boolean operations, including complementation, and 
PTIME decision procedures (including universality)?



Costs
Deterministic automata
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Union Intersect. Complement. Nonemptiness

Hyper-Rabin
Quadratic Exponential

PTIME

Hyper-Streett
NP-Complete

Emerson-Lei No blowup

Hyper-dual Polynomial PTIME

But, can we hope for more?

A deterministic automaton type that allows for polynomial 
boolean operations, including complementation, and 
PTIME decision procedures (including universality)?  YES!



Hyper-dual
• At first, it might seem to be just a dirty trick.
• At a second look, it may be very interesting…

Hyper-dual = A pair of hyper-Rabin and hyper-Streett
automata for the same language.
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Hyper-Rabin Hyper-Streett

For deterministic automata, it is the same as having a pair of 
Hyper-Rabin automata for both L and its complement Lc.



Are You Kidding?
Maintaining automata for both L and Lc is pure redundancy!
• Use a single hyper-Rabin and complement it on demand. 

Yes: It indeed reveals an interesting property of Hyper-Rabin.

And No:
• The complementation procedure is exponential, and does 

not guarantee the smallest possible hyper-Streett automaton.
• Often, automata generation is iterative, and with hyper-dual 

automaton we avoid complementation: We may start with 
two equal copies of a Rabin automaton.

• Targeting a hyper-dual automaton, we may use properties 
that are succinctly expressed by it.
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A General Trick?
So, is it in general beneficial to maintain two copies of 
deterministic automata over dual acceptance conditions?
• For example, Rabin and Streett automata?

No. 
• It obviously allows for “free” complementation, yet it might 

have a price in union and intersection. 
• A pair of deterministic Rabin and Streett automata has an 

exponential size blowup on both union and intersection. 
• Hyper-dual is strong enough to prevent this price, and not 

too strong for preserving decision problems in PTIME.
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Hyper-dual Costs

The promising properties:

• Succinctness: Not more than (twice) Rabin and Street, 
and sometimes exponentially less than them.

• Boolean operations: Complementation with no 
blowup; union and intersection with quadratic blowup.

• Decision problems: All in PTIME – nonemptiness, 
universality, equivalence, and containment.
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Containment of Det. Hyper-Dual
• Consider deterministic hyper-dual automata 

C=(A, B) and C’ =(A’, B’). 

• Then L(C) Í L(C’) iff L(A) Ç L(B’)C = Æ.

• Observe that L(B’)C = L(B’C) and that B’C is a hyper-Rabin 
automaton.

• Thus, we intersect two hyper-Rabin automata in 
quadratic time, and check emptiness in PTIME.
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Conclusions
• Automata on infinite words deserve many types.

� Each is related to other interesting formalisms, and has its 
pros and cons.

• An organized picture: http://www.faculty.idc.ac.il/udiboker/automata

• There is still place to look into additional new types.

• Hyper-Rabin/Streett/dual automata look interesting for further 
exploration.
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