Inherent Size Blowup in ω-Automata

Udi Boker IDC Herzliya, Israel

DLT 2019

Automata on Finite Words

L(A) = Words that end with an 'a'

• You all know it, but... we will not be speaking of them

Automata on Infinite Words

L(A) = ?

- Automata on infinite words were introduced in the 60's, in the course of solving fundamental decision problems in logic.
- Nowadays, they are widely used in formal verification and synthesis of nonterminating (reactive) systems.

But, how do we define the acceptance condition?

Many Automata Types

1986, Weak 1962, Büchi

1984, Parity

1969, Rabin

1982, Streett

1963, Muller

Co-Büchi

L(B) = Finitely many b's

- There is a set of accepting states.
- A run is accepting if it visits some accepting state infinitely often.
- A word is accepted if there is an accepting run on it.

Rabin Automata (By Michael Rabin in 1969)

Acceptance condition: Bad Good $\langle \{q_a\}, \{q_b, q_c\} \rangle;$ $\langle \{q_b\}, \{q_a\} \rangle$

• A run r is accepting if exists an accepting pair (B,G), such that r visits B finitely often and G infinitely often.

Streett Automata (By Robert Streett in 1982)

Acceptance condition: Bad Good $\langle \{q_b, q_c\}, \{q_a\} \rangle;$ $\langle \{q_a\}, \{q_b\} \rangle$

 A run r is accepting if for every pair (B,G), r visits B finitely often or G infinitely often.

Why These Automata Types?

Do we need more acceptance conditions?

[Kurshan, 1994]: "The choice of automaton type to use in connection with formal verification is governed by two issues: *syntactic suitability* and *computational complexity*."

The Plan

We analyze the classic types by their:

- Connection to other formalisms
- Expressiveness
- Succinctness (with respect to each other and to arbitrary types)
- Complexity of decision problems
- Size blowup involved in boolean operations

We answer whether: Spoilers:

- It is justified to use them all Yes
- There is a need for additional types

Classic types: Weak, Büchi, co-Büchi, parity, Rabin, Streett, Muller

Yes

Analysis of the Classic Types

- Well known
- Connection to other formalisms All are well connected...
- Well known Expressiveness Clear picture
- Partially known Quite a mess
- Well known
- Partially known (as of 2018)

- Succinctness Organize and almost complete
- Decision problems Clear picture
- Boolean operations
 We complete the picture

Connection to Other Formalisms

The different types are related to various aspects of formal verification, to various logics, and other formalisms.

For example:

- Weak: Linear temporal logic, alternation free mu-calculus
- Büchi and Co-Büchi : Fairness
- Parity: Mu-calculus
- Rabin and Streett: Strong fairness, memoryless strategies
- Muller: Wagner hierarchy

Expressiveness

Succinctness – Between Them

- Due to the advantages and disadvantages of each type, there is a rich literature on the translations between them.
 - > Starting in the 60s and continuing until these days.
- But, the literature is inconsistent and incomplete.
 - > There is inconsistency in the view of the automaton *size*.
 - > There are "only" 175 non-self translations between them.
 - A problem to find the data.
 - Some translation-bounds are still missing.

Automaton Elements

An automaton has:

- Alphabet
- States
- Transitions
- Acceptance condition (Index)

- All results on the translations between automata, when speaking of size, take into account the number of states.
- Yet, some ignore the alphabet, and others ignore the index.

We define:

Size = max(alphabet, states, transitions, index)

The source and target automaton share the same alphabet. Ideally:

- Upper bounds over arbitrary alphabets
- Lower bounds over a fixed alphabet (i.e., of a constant size) It indeed works, eliminating the alphabet influence.

We define:

Size = max(alphabet, states, transitions, index)

- For deterministic automata, the number of transitions is bounded by States × Alphabet.
- For nondeterministic automata, the number of transitions is bounded by States × States × Alphabet.
- Furthermore, it turns out that the transition blowup goes hand in hand with the state blowup.

We define:

Size = max(alphabet, states, transitions, index)

We demonstrate next that the number of states and the index are both important and moreover – interconnected.

Or something in between them

We define:

Size = max(alphabet, states, transitions, index)

Moral:

- The state blowup is important but
- The size blowup is also important

Succinctness – Between Them

A web site with all results:

http://www.faculty.idc.ac.il/udiboker/automata

State blowup and Size blowup

Succinctness – W.r.t. Arbitrary Types

- Proposition: For every ω-regular nondet. automaton of size n, there is an equivalent nondet. Büchi automaton of size
 2^{O(n)} and an equivalent det. parity automaton of size 2^{2^{O(n)}}.
- [Safra & Vardi, 89]: There is a family A_n of ω -regular automata of size n, such that every ω -regular automaton for the complement of A_n has at least 2^{2^n} states.
- Conclusion: The classic types (except for Muller) provide a reasonable tradeoff between succinctness and blowup of determinization and complementation, having all of them singly exponential.

Decision Problems

	Nonemptiness	Universality
Weak		
Co-Büchi	Linear time	
Büchi		
Parity		PSPACE-Complete
Rabin		
Streett	PIIME	
Muller		

Nondeterministic automata

	Union	Intersect.	Complement.
Weak			
Co-Büchi			
Büchi			
Parity	Linear	Polynomial	Exponential
Rabin			
Streett			
Muller		?	?

• The question marks stand for open as of 2018.

Nondeterministic automata

	Union	Intersect.	Complement.
Weak			
Co-Büchi			
Büchi			
Parity	Linear	Polynomial	Exponential
Rabin			
Streett			
Muller		Exponential	Double-Exp

- Muller automata are great for theoretical purposes
- Not suitable for practical implementation

		Union	Intersect.	Complement.
Not	Weak			
<i>ω</i> -regular complete	Co-Büchi			
	Büchi			
	Parity			
	Rabin			
	Streett			
	Muller			

		Union	Intersect.	Complement.
Not	Weak			No blowup
ω -regular complete	Co-Büchi	Quadratic		No blowup
	Büchi			(if possible)
	Parity			
	Rabin			
	Streett			
	Muller			

		Union	Intersect.	Complement.
Not	Weak			No blowup
ω-regularcompleteBü	Co-Büchi	Quadratic		No blowup
	Büchi			(if possible)
	Parity			No blowup
	Rabin			
	Streett			Exponential
	Muller			

		Union	Intersect.	Complement.
Not	Weak			No blowup
ω -regular complete	Co-Büchi	Quadratic		No blowup
	Büchi			(if possible)
	Parity	?	?	No blowup
	Rabin	Quadratic	?	
	Streett	?	Quadratic	Exponential
	Muller	?	?	

- Deterministic automata are not necessary for model checking
- Required in synthesis and probabilistic model checking

		Union	Intersect.	Complement.
Not	Weak			No blowup
ω -regular complete	Co-Büchi Quadratic		dratic	No blowup
	Büchi			(if possible)
	Parity	Expor	nential	No blowup
	Rabin	Quadratic	Exponential	
	Streett	Exponential	Quadratic	Exponential
	Muller	Expor	nential	

Positive Boolean Operations

ω -regular-complete deterministic automata

	Union	Intersect.	
Parity	Exponential		
Rabin	Quadratic Exponent		
Streett	Exponential Quadratic		
Muller	Exponential		

- Deterministic automata are required nowadays
- Union and intersection are very useful for compound systems
- They involve an exponential size blowup in all the ω -regularcomplete classic automata

Is an exponential blowup inevitable?

Positive Boolean Operations

 ω -regular-complete deterministic automata

Is an exponential blowup inevitable? No

How?

Using stronger acceptance conditions

Does it worth it? Seems so

Emerson-Lei Automata

- Introduced in 1985 by Allen Emerson and Chin-Laung Lei
- Some popularity shortly after; Less popular afterwards
- Regained popularity in the past seven years
- Acceptance condition: a boolean formula over Fin(S), Inf(S).
 - > S is an arbitrary set of states.
 - > Fin(S) / Inf(S) means that S is visited finitely/infinitely often
- Generalizes the other conditions
 - > Büchi: Inf(F)
 - ▶ Rabin: $\bigvee_{i=1}^{n} Fin(B_i) \land Inf(G_i)$

Emerson-Lei Automata

Pros

- A very flexible acceptance condition
- Boolean operations on deterministic automata are trivial

Cons

- For nondeterministic automata: Doubly-exponential complementation and determinization
- In general: Nonemptiness check is NP-complete

Bottom line

- Interesting in some settings
- Often too much of a price for the extra flexibility

Some other (re)New(ed) Types

- Generalized-Rabin [J. Kretínský and J. Esparza, 2012] : $V_{i=1}^{n} Fin(B_{i}) \wedge Inf(G_{i1}) \wedge Inf(G_{i2}) \wedge \cdots \wedge Inf(G_{i_{k_{i}}})$
- Hyper-Rabin ("canonical form" in [Emerson&Lei, 1987]): $V_{i=1}^n \Lambda_{j=1}^m Fin(B_{i,j}) \vee Inf(G_{i,j})$
- Generalized-Streett [F. Blahoudek, 2012]: $\Lambda_{i=1}^{n} Inf(G_{i}) \vee Fin(B_{i1}) \vee Fin(B_{i2}) \vee \cdots \vee Fin(B_{i_{ki}})$

 $\bigwedge_{i=1}^{n} \bigvee_{j=1}^{m} Fin(B_{i,j}) \wedge Inf(G_{i,j})$

• Hyper-Streett:

The Hyperfurther generalize the Generalized-.

Thm. Hyper-Rabin/Streett generalize all the classic conditions; There is an exponential size blowup in the other direction, for deterministic automata.

Connection to Verification

- The generalized- and hyper-Rabin conditions naturally occur in the translation of various fragments of LTL into automata.
 - [K. Chatterjee, A. Gaiser, J. Kretínský, 2012];
 [J. Esparza, J. Kretínský, Sickert, 2016]
- The generalized- and hyper-Streett conditions naturally occur in n-player omega-regular games.
 - > [E. Filiot, R. Gentilini, J. F. Raskin, 2018]

	Union	Intersect.	Complement.	Nonemptiness
Hyper-Rabin				
Hyper-Streett				
Emerson-Lei	Qua	adratic	No blowup	NP-Complete

• Generalized-Rabin/Streett have the same costs as Hyper-Rabin/Streett.

	Union	Intersect.	Complement.	Nonemptiness
Hyper-Rabin				
Hyper-Streett	Quadratic			
Emerson-Lei	-		No blowup	NP-Complete

• Generalized-Rabin/Streett have the same costs as Hyper-Rabin/Streett.

	Union	Intersect.	Complement.	Nonemptiness
Hyper-Rabin	Quadratic		Evpopoptial	
Hyper-Streett			схроненна	
Emerson-Lei			No blowup	NP-Complete

• Generalized-Rabin/Streett have the same costs as Hyper-Rabin/Streett.

Costs

• Generalized-Rabin/Streett have the same costs as Hyper-Rabin/Streett.

So: Hyper-Rabin has great potential for compound systems.

 Already partially fulfilled with generalized-Rabin [K. Chatterjee, A. Gaiser, J. Kretínský, 2012];
 [J. Esparza, J. Kretínský, Sickert, 2016]

	Union	Intersect.	Complement.	Nonemptiness
Hyper-Rabin	Quadratic		Exponential	PTIME
Hyper-Streett				NP-Complete
Emerson-Lei			No blowup	

But, can we hope for more?

	Union	Intersect.	Complement.	Nonemptiness
Hyper-Rabin	Quadratic		Exponential	PTIME
Hyper-Streett				NP-Complete
Emerson-Lei			No blowup	
?	Polynomial		PTIME	

But, can we hope for more?

A deterministic automaton type that allows for polynomial boolean operations, <u>including complementation</u>, and PTIME decision procedures (including universality)?

	Union	Intersect.	Complement.	Nonemptiness
Hyper-Rabin	Quadratic		Eupopontial	PTIME
Hyper-Streett			Exponential	NP-Complete
Emerson-Lei			No blowup	
Hyper-dual	Polynomial		PTIME	

But, can we hope for more?

A deterministic automaton type that allows for polynomial boolean operations, <u>including complementation</u>, and PTIME decision procedures (including universality)? YES!

Hyper-dual

- At first, it might seem to be just a dirty trick.
- At a second look, it may be very interesting...

Hyper-dual = A pair of hyper-Rabin and hyper-Streett automata for the same language.

Hyper-Rabin	Hyper-Streett

For deterministic automata, it is the same as having a pair of Hyper-Rabin automata for both L and its complement L^C.

Are You Kidding?

Maintaining automata for both L and L^c is pure redundancy!

• Use a single hyper-Rabin and complement it on demand.

Yes: It indeed reveals an interesting property of Hyper-Rabin. And No:

- The complementation procedure is exponential, and does not guarantee the smallest possible hyper-Streett automaton.
- Often, automata generation is iterative, and with hyper-dual automaton we avoid complementation: We may start with two equal copies of a Rabin automaton.
- Targeting a hyper-dual automaton, we may use properties that are succinctly expressed by it.

A General Trick?

So, is it in general beneficial to maintain two copies of deterministic automata over dual acceptance conditions?

• For example, Rabin and Streett automata?

No.

- It obviously allows for "free" complementation, yet it might have a price in union and intersection.
- A pair of deterministic Rabin and Streett automata has an exponential size blowup on both union and intersection.
- Hyper-dual is strong enough to prevent this price, and not too strong for preserving decision problems in PTIME.

Hyper-dual Costs

The promising properties:

- Succinctness: Not more than (twice) Rabin and Street, and sometimes exponentially less than them.
- Boolean operations: Complementation with no blowup; union and intersection with quadratic blowup.
- Decision problems: All in PTIME nonemptiness, universality, equivalence, and containment.

Containment of Det. Hyper-Dual

- Consider deterministic hyper-dual automata C=(A, B) and C' = (A', B').
- Then L(C) \subseteq L(C') iff L(A) \cap L(B')^C = \emptyset .
- Observe that L(B')^C = L(B'^C) and that B'^C is a hyper-Rabin automaton.
- Thus, we intersect two hyper-Rabin automata in quadratic time, and check emptiness in PTIME.

Conclusions

- Automata on infinite words deserve many types.
 - > Each is related to other interesting formalisms, and has its pros and cons.
- An organized picture: <u>http://www.faculty.idc.ac.il/udiboker/automata</u>
- There is still place to look into additional new types.
- Hyper-Rabin/Streett/dual automata look interesting for further exploration.

