Single-stranded architectures for computing

Shinnosuke Seki

Algorithmic "Oritatami" Self-assembly Lab @ UEC Tokyo, Japan LIP, École Normale Supérieure de Lyon, France

DLT2019, Warsaw, August 5-9

Fiat moleculis

Time to Vaccinate

Fiat moleculis

Playground and conformation

Playground and conformation

Conformation

is a tuple (P, w, H) of

- P Non-self-crossing directed path
- w String (transcript) as long as P
- H Set of (hydrogen) bonds

Playground and conformation

Conformation

is a tuple (P, w, H) of

- P Non-self-crossing directed path
- w String (transcript) as long as P
- H Set of (hydrogen) bonds

Example

Let
$$\Sigma = \{a, a', b, b', \bullet\}$$
 and $R = \{(a, a'), (b, b')\}.$

P as shown right

$$w = b'b \cdot a' \cdot b' \cdot b'b$$

$$H$$
 {(0,5),(3,8),(2,11)}

Playground and conformation

Conformation

is a tuple (P, w, H) of

- P Non-self-crossing directed path
- w String (transcript) as long as P
- H Set of (hydrogen) bonds

Example

Let
$$\Sigma = \{a, a', b, b', \bullet\}$$
 and $R = \{(a, a'), (b, b')\}.$

P as shown right

$$\mathbf{w} = \mathbf{a} \cdot \mathbf{b}' \mathbf{b} \cdot \mathbf{a}' \cdot \mathbf{b}' \cdot \mathbf{b}' \mathbf{b}$$

$$H \{(0,5),(3,8),(2,11)\}$$

Playground and conformation

Conformation

is a tuple (P, w, H) of

- P Non-self-crossing directed path
- w String (transcript) as long as P
- H Set of (hydrogen) bonds

Example

Let
$$\Sigma = \{a, a', b, b', \bullet\}$$
 and $R = \{(a, a'), (b, b')\}.$

P as shown right

$$w \ a \bullet b'b \bullet a' \bullet \bullet b' \bullet b'b$$

 $H \{(0,5),(3,8),(2,11)\}$

Playground and conformation

Conformation

is a tuple (P, w, H) of

- P Non-self-crossing directed path
- w String (transcript) as long as P
- H Set of (hydrogen) bonds

Example

Let
$$\Sigma = \{a, a', b, b', \bullet\}$$
 and $R = \{(a, a'), (b, b')\}.$

P as shown right

$$w \ a \bullet b'b \bullet a' \bullet \bullet b' \bullet b'b$$

$$H \{(0,5),(3,8),(2,11)\}$$

An oritatami system is a tuple $\Xi = (\Sigma, w, R, \delta, \alpha)$, where Σ finite alphabet of bead (abstract molecule) types $w \in \Sigma^* \cup \Sigma^\omega$ transcript, a string to be folded $R \subseteq \Sigma \times \Sigma$ rule set to specify which types of beads can interact δ delay (transcription rate) α arity, max # of bonds/bead

An input (seed) to Ξ is a finite conformation σ .

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

Consider an oritatami system with transcript $w = (b \bullet a'a \bullet b')^*$, rule set $R = \{(a, a'), (b, b')\}$, delay $\delta = 3$, and the seed below colored in red.

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Already occupied!!

Dynamics

Example (Glider)

Consider an oritatami system with transcript $w = (b \bullet a'a \bullet b')^*$, rule set $R = \{(a, a'), (b, b')\}$, delay $\delta = 3$, and the seed below colored in red.

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

1 bond against 2 bonds for stabilization

Dynamics

Example (Glider)

Consider an oritatami system with transcript $w = (b \bullet a'a \bullet b')^*$, rule set $R = \{(a, a'), (b, b')\}$, delay $\delta = 3$, and the seed below colored in red.

- Transcribe $w[1..\delta]$ at the 3'-end of the seed
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

1 bond against 2 bonds for stabilization

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

w[1] = b is fixed accordingly and

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i...i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

Consider an oritatami system with transcript $w = (b \bullet a'a \bullet b')^*$, rule set $R = \{(a, a'), (b, b')\}$, delay $\delta = 3$, and the seed below colored in red.

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

This time 1 bond is enough for stabilization

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i...i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Dynamics

Example (Glider)

Consider an oritatami system with transcript $w = (b \bullet a'a \bullet b')^*$, rule set $R = \{(a, a'), (b, b')\}$, delay $\delta = 3$, and the seed below colored in red.

- Transcribe $w[1..\delta]$ at the 3'-end of the seed
- for (i = 1, i < |w|, i = i + 1) {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Another a-bead around causes ...

Dynamics

Example (Glider)

Consider an oritatami system with transcript $w = (b \bullet a'a \bullet b')^*$, rule set $R = \{(a, a'), (b, b')\}$, delay $\delta = 3$, and the seed below colored in red.

- Transcribe $w[1..\delta]$ at the 3'-end of the seed.
- for $(i = 1, i \le |w|, i = i + 1)$ {
 - 1. Fold $w[i..i + \delta 1]$ in all geometrically-possible manners.
 - 2. Stabilize w[i] so as for $w[i..i + \delta 1]$ to form as many bonds as possible.
 - 3. Transcribe $w[i + \delta]$.

Another a-bead around causes ...

Efficient Turing universality

Theorem [Geary, Meunier, Schabanel, S. 2018]

There are a fixed set Σ of 542 bead types, a rule set R, and the following poly-time encodings:

- a single-tape Turing machine M o a string $w_M \in \Sigma^*$
- M and its input x o a seed $\sigma_M(x)$ of size linear in |x| and polynomial in |M|

with which at delay 3, starting from the seed $\sigma_M(x)$, the oritatami system stops folding w_M after $O_M(t^4 \log^2 t)$ beads iff M halts on x after t steps.

6 / 38

Fiat moleculis

Et creavit Deus self-assembly hominem ad imaginem suam from molecules.

Et creavit Deus self-assembly hominem ad imaginem suam from molecules.

Self-assembly

Simple components (e.g., molecules)

- interact locally
- with little/no external control into sth. complex/sophisticated.

Molecular self-assembly

Interactive programmable DNA tiles [Evans 2014, Winfree+3 1998]

Sequences of 4 sticky ends (single-stranded parts, 2 green, 2 yellow) dominate how this tile interacts with other tiles.

Interactive programmable DNA tiles [Evans 2014, Winfree+3 1998]

Binary counting *in vitro* using a set of DNA tile types implementing half-adder. In principle, just 4 tile types suffice.

artwork by [Evans 2014]

In-vitro self-assembly (engineering goal so far)

In-vivo self-assembly (next step)

In-vivo self-assembly (next step)

Thermal control is necessary in order to proceed self-assembly of DNA, which is quite stable, that is, ...

In-vivo self-assembly (next step)

In-vivo self-assembly (next step)

One solution

Cotranscriptional folding

A copy (RNA transcript) of a DNA sequence folds upon itself while being transcribed (synthesized), that is, cotranscriptionally.

This process is isothermal.

Cotranscriptional folding

RNA origami (in-vitro self-assembly of RNA tile by CF)^a

^aGeary, Rothemund, Andersen, Science 345:798-802, 2014

Specific RNA tile $\mathcal{T} \xrightarrow{\operatorname{program}}$ a DNA sequence $\xrightarrow{\operatorname{CF}} \mathcal{T}$

(ロ) (団) (団) (目) (目) (日)

Cotranscriptional folding

RNA origami (in-vitro self-assembly of RNA tile by CF)^a

^aGeary, Rothemund, Andersen, Science 345:798-802, 2014

Specific RNA tile $T \xrightarrow{\operatorname{program \ buthow?}}$ a DNA sequence $\xrightarrow{\operatorname{CF}} T$

(ロ) (団) (団) (団) (団) (団)

RNA polymerase: Loss-less (1-to-1) synthesis from DNA to RNA

RNA
U
G
C
Α

 θ is extended to an antimorphic involution from a DNA sequence to an RNA sequence.

Figure 7-7 Essential Cell Biology (© Garland Science 2010)

RNA polymerase: Loss-less (1-to-1) synthesis from DNA to RNA

The idea of this diagram is taken from [Feynman 1996].

DNA	$\xrightarrow{\theta}$	RNA
Α	\rightarrow	U
C	\rightarrow	G
G	\rightarrow	C
T	\rightarrow	Α

 θ is extended to an antimorphic involution from a DNA sequence to an RNA sequence.

RNA polymerase: Loss-less (1-to-1) synthesis from DNA to RNA

The idea	of this	diagram	is taken	from	[Feynman	1996].
i iic iaca	01 11113	alagrain	is tarteri		Li cyiiiiaii	1330].

DNA	$\xrightarrow{\theta}$	RNA
Α	\rightarrow	U
C	\rightarrow	G
G	\rightarrow	C
Т	\rightarrow	Α

 θ is extended to an antimorphic involution from a DNA sequence to an RNA sequence.

Pyrophosphate

Transcription rates for survival

super-fast	Speed	100x slower
erroneous	Accuracy	precise
high but	Load on NTP	low
doesn't care	production	
T7 RNA polymerase	Type	3 specialized polymerases

4 D > 4 D > 4 E > 4 E > E = 99 C

Regulate gene expression by CF [Watters et al. 2016]

Concentration of NaF (sodium fluoride) may promote or inhibit the transcript

UUAUAGGCGAUGGAGUUCGCCAUAAACGCUGCUUAGCUAAUGACUCCUACCAGUAUCACUACUGGUAGGAGUC

to fold into the terminator stem cotranscriptionally.

Terminated (0 mM NaF)

Anti-terminated (10 mM NaF)

- Prologue
 - Cotranscriptional folding
 - Oritatami
- 2 Let's design a simple processor in oritatami
- Oritatami programming framework
- 4 Reference

Oritatami system [Geary, Meunier, Schabanel, S. 2016] a mathematical model to study computational aspects of CF.

Fixed bit-width binary counter system in oritatami [Geary, Meunier, Schabanel, S. 2016]

Oritatami system [Geary, Meunier, Schabanel, S. 2016] a mathematical model to study computational aspects of CF.

Fixed bit-width binary counter system in oritatami [Geary, Meunier, Schabanel, S. 2016]

Oritatami system [Geary, Meunier, Schabanel, S. 2016] a mathematical model to study computational aspects of CF.

Fixed bit-width binary counter system in oritatami [Geary, Meunier, Schabanel, S. 2016]

Abstraction^a

^aldea and artworks by Cody Geary.

RNA origami tile

Oritatami conformation

Each • (bead) is labeled with a sequence of several nucleotides such as AACU.

An oritatami system is *cyclic* if its transcript w is of the form u^*u_p for a word $u \in \Sigma^*$ and its prefix u_p .

Idea: CF of periodic transcript from a circular DNA

Cyclicity is the only one finite mean considered so far to describe infinite oritatami systems.

Question

Can we design a single transcript *w* that folds as specified in each of given environments?

Terminated (0 mM NaF)

Anti-terminated (10 mM NaF)

Question

Can we design a single transcript w that folds as specified in each of given environments?

An environment e is a pair (B_e, p_s) of a set B_e of points labeled with a letter in Σ (beads) and a point p_s to start folding.

Environment e₁

Environment *e*₂

Question

Can we design a single transcript *w* that folds as specified in each of given environments?

An environment e is a pair (B_e, p_s) of a set B_e of points labeled with a letter in Σ (beads) and a point p_s to start folding.

Oritatami design problem (ODP)

Given: Set of k pairs (e_i, P_i) of an environment and target path

s.t. $|P_1| = |P_2| = \cdots = |P_k| = n$

Find: an oritatami system $(\Sigma, R, w, \delta, \alpha)$ that folds w along the path P_i

in the environment e_i for all $1 \le i \le k$

Oritatami design problem (ODP)

Given: Set of k pairs (e_i, P_i) of an environment and target path

s.t. $|P_1| = |P_2| = \cdots = |P_k| = n$

Find: an oritatami system $(\Sigma, R, w, \delta, \alpha)$ that folds w along the path P_i

in the environment e_i for all $1 \le i \le k$

Rule set design is NP-hard [Ota, S. 2017]

If ODP is modified such that w, δ, α are given instead, then the problem becomes NP-hard even when k = 1.

Oritatami design problem (ODP)

Given: Set of k pairs (e_i, P_i) of an environment and target path

s.t. $|P_1| = |P_2| = \cdots = |P_k| = n$

Find: an oritatami system $(\Sigma, R, w, \delta, \alpha)$ that folds w along the path P_i

in the environment e_i for all $1 \le i \le k$

Fixed parameter tractable algorithm [Geary, Meunier, Schabanel, S. 2016]

With Σ large enough so that

- w doesn't have to share a bead type with any e_i, and
- any two beads of w are of pairwise-distinct type (hardcodable transcript),

ODP can be solved in time linear in n but exponential in k or δ .

→ module-based design

There is a rule set R over $\Sigma = \{0, 1, \ldots, 59\}$ (shown later) according to which, starting from a seed (colored in orange) encoding an integer x in binary, the periodic transcript $w = (0-1-\cdots-59)^*$ folds into zigzags that encode $x+1, x+2, \ldots, 2^{2k+1}-1$, respectively.

4 D > 4 D > 4 E > 4 E > E 9 Q Q

Global folding pathway design

1. Modularization, deployment of modules and signals

- 2. Wiring with semantics
- 3. Optimization (shortening period of transcript from the order of bit-width to O(1))

Global folding pathway design

- Modularization, deployment of modules and signals
- 2. Wiring with semantics
- 3. Optimization (shortening period of transcript from the order of bit-width to O(1))

Global folding pathway design

- 1. Modularization, deployment of modules and signals
- 2. Wiring with semantics
- 3. Optimization (shortening period of transcript from the order of bit-width to O(1))

Module and Brick

The FPT algorithm lets brick-based programming.

Turing universality without RAM

Turing universality without RAM

Turing universality without RAM

Turing universality without RAM

Turing universality without RAM

Turing universality without RAM

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

- 1 The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- 4 Delete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

$$egin{array}{lll}
ightarrow & lpha_0 = 110 \
ightarrow & lpha_1 = \lambda \
ightarrow & lpha_2 = 11 \
ightarrow & lpha_3 = 0 \end{array}$$

- ① The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- 4 Delete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

- 1 The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- 4 Delete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

$$ightarrow \quad lpha_0 = 110 \
ightarrow \quad lpha_1 = \lambda \
ightarrow \quad lpha_2 = 11 \
ightarrow \quad lpha_3 = 0$$

- 1 The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- Oelete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

- 1 The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- 4 Delete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

- 1 The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- 4 Delete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

- 1 The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- Oelete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

$$egin{array}{lll}
ightarrow & lpha_0 = 110 \
ightarrow & lpha_1 = \lambda \
ightarrow & lpha_2 = 11 \
ightarrow & lpha_3 = 0 \end{array}$$

- The leftmost letter (0/1) is read.
- Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- Oelete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

Cyclic list of appendants

- The leftmost letter (0/1) is read.
- 2 Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- 4 Delete the (leftmost) read letter.

Turing universality without RAM

Skipping cts

Derivation

 $u_6 =$

Cyclic list of appendants

$$egin{array}{lll}
ightarrow & lpha_0 = 110 \
ightarrow & lpha_1 = \lambda \
ightarrow & lpha_2 = 11 \
ightarrow & lpha_3 = 0 \end{array}$$

Rewriting rule

Halt

- 1 The leftmost letter (0/1) is read.
- 2 Rotate the list by 1,
- If it is 1, append the current appendant at the end of the current word, and rotate the list by 1.
- 4 Delete the (leftmost) read letter.

Simulation of SCTS in oritatami: High level overview

Simulation of SCTS in oritatami: High level overview

Brick automaton

Brick example

Module G takes 5 bricks

Brick and Transcript

The oritatami system involves 7 modules A, B, C, D, E, F, G.

- Each appendant α_i of an SCTS simulated is encoded as $ABCD(\alpha_i)E(\alpha_i)FG$.
- Let $P(\alpha_i) = ABCD(\alpha_i)E(\alpha_i)F$
- The transcript is cyclic as:

$$w = (P(\alpha_0)G \cdot P(\alpha_1)G \cdots P(\alpha_{n-1})G)^*.$$

Proof sketch and efficiency

Universal TM $\xrightarrow{[Neary\ 2008]}$ Skipping cts $\xrightarrow{Our\ contribution}$ Oritatami

Theorem

There are a fixed set Σ of 542 bead types, a rule set R, and the following two encodings:

- ullet π , which maps in polynomial time, any single tape Turing machine $\mathcal M$ to a sequence $\pi_{\mathcal M}\in \Sigma^*$
- (s, σ) , which maps in polynomial time, \mathcal{M} and its input x to a seed $\sigma_{\mathcal{M}}(x)$ of size linear in |x| (and polynomial in $|\mathcal{M}|$)

with which at delay 3, the oritatami system halts its folding from $\sigma_{\mathcal{M}}(x)$ after $O_{\mathcal{M}}(t^4 \log^2 t)$ beads if and only if \mathcal{M} halts on x after t steps.

Rule set

References I

M. Cook Universality in elementary cellular automata. Complex Systems 15 (2004) 1-40

Computing without random access memory: Cyclic tag systems for proofs and interpretation.

Invited talk at DNA 22, Sept. 4-8, 2016.

M. Cook

References II

C. G. Evans

Crystals that Count! Physical Principles and Experimental Investigations of DNA Tile Self-Assembly Ph. D. thesis, Caltech, 2014

R. P. Feynman
Feynman Lectures on Computation.
Perseus (for Hbg), 1996

C. Geary, P-E. Meunier, N. Schbanel, S. Seki Programming biomolecules that fold greedily during translation. MFCS 2016, LIPIcs 58, 43:1-43:14, 2016

C. Geary, P-E. Meunier, N. Schbanel, S. Seki Proving the Turing universality of oritatami co-transcriptional folding. ISAAC 2018, LIPIcs 123, 23:1-23:13, 2018

References III

C. Geary, P. W. K. Rothemund, E. S. Andersen A single-stranded architecture for cotranscriptional folding of RNA nanostructures

Science 345 (2014) 799-804

Y-S. Han and H. Kim Ruleset Optimization on Isomorphic Oritatami Systems DNA 23, LNCS 10467, 33-45, 2017

References IV

- T. Neary Small universal Turing machines Ph.D. thesis, National University of Ireland, 2008
- M. Ota and S. Seki Ruleset design problems for oritatami systems *Theor. Comput. Sci.* 671 (2017) 26-35
- K. E. Watters, E. J. Strobel, A. M. Yu, J. T. Lis, and J. B. Lucks Cotranscrptional folding of a riboswtich at nucleotide resolution *Nat. Struct. & Mol. Biol.* 23(12) (2016) 1124-31
- E. Winfree, F. Liu, L. A. Wenzler, and N. C. Seeman. Design and self-assembly of two-dimensional DNA crystals. *Nature* 394: 539-544, 1998.

