Deciding Context Unification with regular constraints

Artur Jeż
University of Wrocław
Developments in Language Theory
Warsaw 08.08.2019
Equations over terms (unification)
Equations over terms

- Equations over terms (unification)
- What can the variables represent?
Variables represent closed terms
Variables represent closed terms

\[
\begin{align*}
&f \\
& \quad f \\
& \quad \quad f \\
& x \quad c \quad c \\
& \quad \quad z
\end{align*}
\]

\[
\begin{align*}
&f \\
& \quad f \\
& \quad \quad f \\
& f \quad z \\
& \quad \quad x \\
& \quad \quad \quad y \quad c
\end{align*}
\]
Variables represent closed terms: \textit{polynomial}

\begin{itemize}
 \item iterative decomposition
\end{itemize}
(First order) term unification

Variables represent closed terms: polynomial

- iterative decomposition

Not covered: “functions”

- open terms
- λ-terms
- ...
Variables have arguments that can be used. Terms with ‘holes’.
Variables have arguments that can be used. Terms with ‘holes’.

\[
X = \begin{array}{c}
h \end{array} \quad f \quad \begin{array}{c}
c \quad c \quad f \end{array} \\
\begin{array}{c}
\triangle \quad \triangle \quad \square
\end{array}
\]

\[
X(t) = \begin{array}{c}
h \end{array} \quad f \quad \begin{array}{c}
h \quad f \end{array} \\
\begin{array}{c}
\triangle \quad \triangle \quad \triangle
\end{array}
\]

\[
\begin{array}{c}
t \quad t \quad t
\end{array} \quad \begin{array}{c}
c \quad c \quad c
\end{array} \\
\begin{array}{c}
\triangle \quad t
\end{array}
\]
Example

Equation

\[
\begin{align*}
X & \quad X \\
\quad c & \quad c
\end{align*}
=
\begin{align*}
X & \quad f \\
\quad c & \quad c
\end{align*}
\]
Equation

Solutions: full binary trees
Problems

Undecidable.
Undecidable.

In very restricted cases:
- one argument
- one binary symbol
- ...

Subtlety
- unbounded number of usages (this causes hardness)
- can the argument be ignored (easy)
Problems

Undecidable.

In very restricted cases:
- one argument
- one binary symbol
- ...

Subtlety
- unbounded number of usages (this causes hardness)
- can the argument be ignored (easy)
Word equations

- Unary signature: word equations.
- Variables represent words $\in \Sigma^*$.
- $aXbXYbbb = XabaabYbY$ ($X = aa, Y = bb$)
Restrictions of second order unification

Word equations

- Unary signature: word equations.
- Variables represent words $\in \Sigma^*$.
- $aaabaabbbbbb = aabaabbbbbb$ ($X = aa, Y = bb$)

Decidable. [Makanin → Plandowski (PSPACE)]
Restrictions of second order unification

Word equations

- Unary signature: word equations.
- Variables represent words $\in \Sigma^*$.
- $aXbXYbbb = XabaabYbY$ $(X = aa, Y = bb)$

Decidable. [Makanin \rightarrow Plandowski (PSPACE)]
In words equation arguments are used once.
In words equation arguments are used once.

Second order unification
Substitution for X uses argument exactly once.
In words, equation arguments are used once.

Context unification

Second order unification
Substitution for \(X \) uses argument exactly once.

\[
X = h \circ c \circ c \circ f \circ c \circ f \circ X(t) = h \circ c \circ c \circ f \circ c \circ f \circ t
\]

Easy reduction: \(k \)-arguments \(\rightarrow \) one argument (NP-reduction)
In words equation arguments are used once.

Second order unification
Substitution for X uses argument exactly once.

Easy reduction: k-arguments \rightarrow one argument (NP-reduction)

Regular constraints: only substitution from a regular (tree) language.
More formally

Definition (Context unification)

- signature (fixed arities) \([f/2, a/1, c/0]\)
- context variables denoting terms with one ‘hole’ \([X/1]\)
- term variables denoting closed terms \([x/0]\)
- equations built with them
More formally

Definition (Context unification)

- **signature** (fixed arities) \([f/2, a/1, c/0]\)
- **context variables** denoting terms with one ‘hole’ \([X/1]\)
- **term variables** denoting closed terms \([x/0]\)
- equations built with them

Definition (Substitution)

A **substitution** \(S\) assigns

- to a term variable: a closed term over a signature
- to a context variable: a term over a signature plus a unique occurrence of ‘hole’ (●)
- extend in a natural way
 \(S(X(t))\): in \(S(X)\) we replace ● with \(S(t)\).
Example

- f: arity 2, c, c': arity 0
- $X(c) = Y(c')$
Example

- f: arity 2, c, c': arity 0
- $X(c) = Y(c')$
Larger example
Larger example

\[S(X) \]
\[S(Y) \]
\[S(Z) \]
\[S(x) \]
Regular constraints

Additional requirements on S:

- $S(x) \in L_x$ (tree regular language)
- $S(u) \in L_u$ (tree regular language)
Regular constraints

Additional requirements on S:

- $S(x) \in L_x$ (tree regular language)
- $S(u) \in L_u$ (tree regular language)
- $S(X) \in L_X$ (??? regular language...—technicalities)
Additional requirements on S:
- $S(x) \in L_x$ (tree regular language)
- $S(u) \in L_u$ (tree regular language)
- $S(X) \in L_X$ (??? regular language...—technicalities)

Why regular constraints?
- because we can
- more expressive ones \implies undecidability
- equivalent to linear second order unification
- regular constraints are somehow expressive
- very successful for word equations
Regular constraints

Additional requirements on S:

- $S(x) \in L_x$ (tree regular language)
- $S(u) \in L_u$ (tree regular language)
- $S(X) \in L_X$ (???.regular language... technicalities

Why regular constraints?

- because we can
- more expressive ones \iff undecidability
- equivalent to linear second order unification
- regular constraints are somehow expressive
- very successful for word equations

- representation of Ls matters for computational complexity.
- some representations are easier to handle
In between important problems:

- word equations, first order-unification
- second-order unification
In between important problems:

- word equations in PSPACE, first order-unification in P
- second-order unification **undecidable**
Why

In between important problems:

- word equations in PSPACE, first order-unification in P
- second-order unification undecidable
- Unknown status (20 years)
- Unique with this property
 (almost: linear second order unification)
In between important problems:

- word equations in \text{PSPACE}, first order-unification in \text{P}
- second-order unification \text{undecidable}
- Unknown status (20 years)
- Unique with this property
 (almost: linear second order unification)

Connections

- one-step term rewriting
- natural language parsing
- linear second-order unification =
 context unification + regular constraints
What was known

- special cases
 - one context variable
 - two context variables
 - stratified context unification
 - context variable always applied on the same term

We will not use any of that.
What was known

- special cases
 - one context variable
 - two context variables
 - stratified context unification
 - context variable always applied on the same term
- undecidability of generalisations
 - $\forall \exists^*$ theory of one-step term rewriting
 - $\forall \exists^*$ theory of word equations

We will not use any of that.
What was known

- special cases
 - one context variable
 - two context variables
 - stratified context unification
 - context variable always applied on the same term
- undecidability of generalisations
 - $\forall \exists^*$ theory of one-step term rewriting
 - $\forall \exists^*$ theory of word equations
- simplifications
 - only one binary symbol and constants

We will not use any of that.
What was known

- special cases
 - one context variable
 - two context variables
 - stratified context unification
 - context variable always applied on the same term
- undecidability of generalisations
 - $\forall \exists^*$ theory of one-step term rewriting
 - $\forall \exists^*$ theory of word equations
- simplifications
 - only one binary symbol and constants

We will not use any of that.
Context unification is in \textbf{PSPACE}.
Context unification is in PSPACE.

Trivially NP-hard
Context unification is in PSPACE.

Trivially NP-hard

- generalises earlier (simpler) solution for word equations
- applies compression to the equation
Context unification is in PSPACE.

Trivially NP-hard

- generalises earlier (simpler) solution for word equations
- applies compression to the equation
- quite natural
- proof reasonable
Context unification is in \textbf{PSPACE}.

Trivially \textbf{NP-hard}

- generalises earlier (simpler) solution for word equations
- applies compression to the equation
- quite natural
- proof reasonable

With regular constraints: in \textbf{EXPTIME}

Easily \textbf{EXPTIME}-hard.
The solution may have elements not present in the equation:

- \(\Sigma = \{f/2, c/0, c'/0\} \)
- \(X(c) = Y(c') \)
- \(S(X) = f(\bullet, c'), S(Y) = f(c, \bullet) \)
The solution may have elements not present in the equation:

- \(\Sigma = \{ f/2, c/0, c'/0 \} \)
- \(X(c) = Y(c') \)
- \(S(X) = f(\bullet, c'), S(Y) = f(c, \bullet) \)

We introduce new symbols to the signature—problem?
The solution may have elements not present in the equation:

\[\Sigma = \{f/2, c/0, c'/0\} \]

\[X(c) = Y(c') \]

\[S(X) = f(\bullet, c'), \quad S(Y) = f(c, \bullet) \]

We introduce new symbols to the signature—problem?

Not a problem: Trimming

If the context equation has a solution then it has it over the signature of letters in the equation (plus arbitrary constant and binary symbol).
The solution may have elements not present in the equation:

- \(\Sigma = \{f/2, c/0, c'/0\} \)
- \(X(c) = Y(c') \)
- \(S(X) = f(\bullet, c'), S(Y) = f(c, \bullet) \)

We introduce new symbols to the signature—problem?

Not a problem: Trimming

If the context equation has a solution then it has it over the signature of letters in the equation (plus arbitrary constant and binary symbol).

- the solution uses other letter \(f/k \): replace it with a fixed \(f_k/k \)
The solution may have elements not present in the equation:

- $\Sigma = \{ f/2, c/0, c'/0 \}$
- $X(c) = Y(c')$
- $S(X) = f(\bullet, c'), S(Y) = f(c, \bullet)$

We introduce new symbols to the signature—problem?

Not a problem: Trimming

If the context equation has a solution then it has it over the signature of letters in the equation (plus arbitrary constant and binary symbol).

- the solution uses other letter f/k: replace it with a fixed f_k/k
- when f_k/k is not in the equation:
 - replace $f_k(t_1, \ldots, t_k)$ with $g(t_1, g(\ldots g(t_{k-1}, t_k) \ldots))$
 - $f_1(t_1) \rightarrow t_1$
 - $c_0 \rightarrow c$
Local compressions
Idea

Use this approach for solving context equations.

▶ apply simple compression operations to the solutions
Idea

Use this approach for solving context equations.

- apply simple compression operations to the solutions
- perform them directly on the equation changes of the equation
Idea

Use this approach for solving context equations.

- apply simple compression operations to the solutions
- perform them directly on the equation changes of the equation
- keep the size small:
 choose a compression that preserves quadratic size of the equation
Idea

Use this approach for solving context equations.

- apply simple compression operations to the solutions
- perform them directly on the equation changes of the equation
- keep the size small: choose a compression that preserves quadratic size of the equation
- this yields PSPACE
‘Absorb’ i-leaf c by its father f (and change father’s label to f'). Replace $f(t_1, t_2, t_3, \ldots, t_{i-1}, c, t_{i+1}, \ldots, t_k)$ with $f'(t_1, t_2, t_3, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k)$
(f, i, c)-leaf compression

- ‘Absorb’ *i*-leaf *c* by its father *f* (and change father’s label to *f’*).
 Replace \(f(t_1, t_2, t_3, \ldots, t_{i-1}, c, t_{i+1}, \ldots, t_k) \) with \(f'(t_1, t_2, t_3, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k) \)
‘Absorb’ i-leaf c by its father f (and change father’s label to f').

Replace $f(t_1, t_2, t_3, \ldots, t_{i-1}, c, t_{i+1}, \ldots, t_k)$ with $f'(t_1, t_2, t_3, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k)$
‘Absorb’ i-leaf c by its father f (and change father’s label to $f’$). Replace $f(t_1, t_2, t_3, \ldots, t_{i-1}, c, t_{i+1}, \ldots, t_k)$ with $f’(t_1, t_2, t_3, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k)$.
Replace each occurrence of ab with d.
Replace each maximal chain a^ℓ with a_ℓ, for all ℓ.
Replace each maximal chain a^ℓ with a_ℓ, for all ℓ.
Replace each maximal chain a^ℓ with a_ℓ, for all ℓ.
Replace each maximal chain a^ℓ with a_ℓ, for all ℓ.
Moving to the equation.
Definition (pair types)

For a solution S the occurrence of ab is

- **explicit** it comes from the equation;
- **implicit** comes solely from $S(X)$ (or $S(x)$);
- **crossing** in other case.

ab is **crossing** (for S) if it has a crossing occurrence (for S), non-crossing (for S) otherwise.
PairNCrComp

1. Let \(c \in \Sigma \) be an unused letter.
2. Replace each explicit \(ab \) in the equation by \(c \).
PairNCrComp

1: let $c \in \Sigma$ be an unused letter
2: replace each explicit ab in the equation by c

Lemma

$\text{PairNCrComp}(a, b)$ *properly compresses noncrossing pairs*.
Non-crossing Pair Compression

PairNCrComp

1: let $c \in \Sigma$ be an unused letter
2: replace each explicit ab in the equation by c

Lemma

PairNCrComp(a, b) properly compresses noncrossing pairs.

Proof.

Every ab is replaced:

- explicit pairs replaced explicitly
- implicit pairs replaced implicitly (in the solution)
- crossing there are none
Definition (a-chain types)

For a solution S the occurrence of a maximal a-chain is

- **explicit** it comes from the equation;
- **implicit** comes solely from $S(X)$ (or $S(x)$);
- **crossing** in other case.

a has **crossing chains** (for S) if it has a crossing a-chain occurrence (for S), non-crossing (for S) otherwise.
ChainNCr

1: for $\ell > 1$ do
2: replace each explicit maximal a^ℓ in the equation by a_ℓ
ChainNCr

1: \textbf{for } \ell > 1 \textbf{ do}

2: replace each explicit maximal \(a^\ell \) in the equation by \(a_\ell \)

Lemma

ChainNCr(\(a\)) \textit{compresses noncrossing} \(a\)-\textit{chains}.
Definition (father-i-leaf pair)

For a solution S the occurrence of father-i-leaf (f, i, c) is

- **explicit** if it comes from the equation;
- **implicit** if it comes solely from $S(X)$ (or $S(x)$);
- **crossing** in other case.

(f, i, c) is crossing (for S) if it has a crossing occurrence (for S), non-crossing (for S) otherwise.
\begin{align*}
&\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (1,0) {b};
\node (c) at (0.5,1) {c};
\node (f) at (0.5,2) {f};
\draw (a) -- (f);
\draw (b) -- (f);
\draw (c) -- (f);
\draw (a) -- (b);
\draw (a) -- (c);
\draw (b) -- (c);
\end{tikzpicture}
\quad = \quad
\begin{tikzpicture}
\node (a) at (0,0) {a};
\node (b) at (1,0) {b};
\node (c) at (0.5,1) {c};
\node (f) at (0.5,2) {f};
\draw (a) -- (f);
\draw (b) -- (f);
\draw (c) -- (f);
\draw (a) -- (b);
\draw (a) -- (c);
\draw (b) -- (c);
\end{tikzpicture}
\end{align*}
Leaf compression ctd.

LeafNCr(f, i, c)

1: replace f with c at positions i by f'
Leaf compression ctd.

Leaf$\text{NCr}(f, i, c)$

1: replace f with c at positions i by f'

Lemma

LeafNCr performs leaf compression when (f, i, c) is non-crossing.
Uncrossing
Uncrossing pairs

\[a \quad b \]
\[y \]

\[X \]
\[X \]
\[a \quad b \quad y \]

If \(S(Y) \) is empty then remove \(Y \).

Lemma

After performing this for all variables, \(ab \) is no longer crossing.

Compact it!
Uncrossing pairs

- replace Y with bY and replace X with Xa
- implicitly change $S(Y) = bt$, $S(X) = t'a$ to $S(Y) = t$, $S(X) = t'$

Lemma
After performing this for all variables, ab is no longer crossing.

Compress it!
Uncrossing pairs

replace Y with bY and replace X with Xa
implicitly change $S(Y) = bt, S(X) = t'a$ to $S(Y) = t,$
$S'(X) = t'$

If $S(Y)$ is empty then remove Y.
Uncrossing pairs

replace Y with bY and replace X with Xa

implicitly change $S(Y) = bt$, $S(X) = t'a$ to $S(Y) = t$, $S(X) = t'$

If $S(Y)$ is empty then remove Y.

Lemma

After performing this for all variables, ab is no longer crossing.
Uncrossing pairs

- replace Y with bY and replace X with Xa
 - implicitly change $S(Y) = bt$, $S(X) = t'a$ to $S(Y) = t$, $S(X) = t'$
- If $S(Y)$ is empty then remove Y.

Lemma

After performing this for all variables, ab is no longer crossing.

Compress it!
Crossing a-chains?

- Crossing a-chain: similar to crossing ab (equiv. to crossing aa).
Crossing a-chains?

- Crossing a-chain: similar to crossing ab (equiv. to crossing aa).
- pop whole a-prefix and a-suffix
 - $S(X) = a^\ell X t a^r X$: change it to $S(X) = t$
 - replace X in equation by $a^\ell X a^r X$
 - they cannot be too long: exponential
Crossing a-chains?

- Crossing a-chain: similar to crossing ab (equiv. to crossing aa).
- Pop whole a-prefix and a-suffix
 - $S(X) = \alpha^X t \alpha^{-X}$: change it to $S(X) = t$
 - replace X in equation by $\alpha^X X \alpha^{-X}$
 - they cannot be too long: exponential
- do for all variables
Crossing a-chains?

- Crossing a-chain: similar to crossing ab (equiv. to crossing aa).
- Pop whole a-prefix and a-suffix
 - $S(X) = a^\ell x t a^\ell x$: change it to $S(X) = t$
 - replace X in equation by $a^\ell x X a^\ell x$
 - they cannot be too long: exponential
- Do for all variables
- a has no crossing chains!
Crossing a-chains?

- Crossing a-chain: similar to crossing ab (equiv. to crossing aa).
- Pop whole a-prefix and a-suffix
 - $S(X) = a^\ell X t a^r X$: change it to $S(X) = t$
 - replace X in equation by $a^\ell X a^r X$
 - they cannot be too long: exponential
- Do for all variables
- a has no crossing chains!
- Compress a-chains
Uncrossing father-leaf pair

\[f \]
\[c \]
\[y \]

\[X \]
\[f \]
\[c \]
\[y \]

\[X \]
\[f \]
\[c \]
\[y \]

Replace \(y \) with \(c \)

\[f(\ldots, x_{i-1}, \ldots, x_i+1, \ldots, x_\ell) \]

Remove \(X \) when \(S(X) \) is empty

\[\text{new variables } x_{i-1}, \ldots, x_i+1, \ldots, x_\ell \]
- replace y with c
- replace X with $X(f(x_1, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_\ell))$
Uncrossing father-leaf pair

- replace y with c
- replace X with $X(f(x_1, \ldots x_{i-1}, \bullet, x_{i+1}, \ldots, x_\ell))$

new variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_\ell$
Uncrossing father-leaf pair

- replace y with c
- replace X with $X(f(x_1, \ldots, x_{i-1}, \bullet, x_{i+1}, \ldots, x_\ell))$
 new variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_\ell$
- remove X when $S(X)$ is empty
Uncrossing father-leaf pair

- replace y with c
- replace X with $X(f(x_1, \ldots x_{i-1}, \bullet, x_{i+1}, \ldots, x_\ell))$
 new variables $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_\ell$
- remove X when $S(X)$ is empty
- there are no crossing (f, i, c) father-i-leaf pairs
- compress them
while equation is nontrivial **do**
The algorithm

while equation is nontrivial do
 choose some ab, a or (f, i, c) to compress
 if it is crossing then
 uncross it
 compress it
Lemma

The maximal arity of letters in Σ does not increase.
Lemma

The maximal arity of letters in Σ does not increase.

Does not depend on the nondeterministic choices.
Lemma

The maximal arity of letters in Σ does not increase.

Does not depend on the nondeterministic choices.

Proof.

Compression operations do not increase arity.
Lemma

The maximal arity of letters in Σ does not increase.

Does not depend on the nondeterministic choices.

Proof.

Compression operations do not increase arity.

Call it k.
Lemma

There are at most

- n context variables
- kn variables

(n: size of the input equation; k—maximal arity of functions)
Lemma

There are at most

- \(n \) context variables
- \(kn \) variables

\((n: \text{size of the input equation}; k—\text{maximal arity of functions})\)

Does not depend on the nondeterministic choices.
Lemma

There are at most
- n context variables
- kn variables

(n: size of the input equation; k—maximal arity of functions)

Does not depend on the nondeterministic choices.

Proof.
- we do not introduce new context variables
- we can associate each ‘new’ variable with context variable at most $(k - 1)$ are associated with one context variable
Controlling new variables: details

When to pop-down

- we pop only when needed: \(X(c) \) and last letter of \(S(X) \) is \(f \)
- at most \(k - 1 \) new variables per \(X \)
- they are all below \(X \).
Controlling new variables: details

When to pop-down

- we pop only when needed: $X(c)$ and last letter of $S(X)$ is f
- at most $k - 1$ new variables per X
- they are all below X.

When X pops again

- $X(c')$ is in equation
- no variable is below X: all were removed
When to pop-down

- we pop only when needed: $X(c)$ and last letter of $S(X)$ is f
- at most $k - 1$ new variables per X
- they are all below X.

When X pops again

- $X(c')$ is in equation
- no variable is below X: all were removed

There are at most kn variables
Soundness
If the new equation has a solution, then also the original one had.
Correctness

Soundness
If the new equation has a solution, then also the original one had.

Just roll back the changes.
Correctness

Soundness
If the new equation has a solution, then also the original one had.

Just roll back the changes.

Completeness
If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.
Correctness

<table>
<thead>
<tr>
<th>Soundness</th>
<th>If the new equation has a solution, then also the original one had.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Just roll back the changes.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Completeness</th>
<th>If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Make the choices according to the solution.</td>
</tr>
</tbody>
</table>
Noncrossing

- decreases the size of the solution
Size

<table>
<thead>
<tr>
<th>Noncrossing</th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ decreases the size of the solution</td>
</tr>
<tr>
<td>▶ decreases the size of the equation</td>
</tr>
<tr>
<td>Noncrossing</td>
</tr>
<tr>
<td>---------------------</td>
</tr>
<tr>
<td>▶ decreases the size of the solution</td>
</tr>
<tr>
<td>▶ decreases the size of the equation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crossing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Noncrossing</td>
<td>Crossing</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>▶ decreases the size of the solution</td>
<td>▶ decreases the size of the solution</td>
</tr>
<tr>
<td>▶ decreases the size of the equation</td>
<td></td>
</tr>
</tbody>
</table>
Size

<table>
<thead>
<tr>
<th>Noncrossing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ decreases the size of the solution</td>
<td></td>
</tr>
<tr>
<td>▶ decreases the size of the equation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crossing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>▶ decreases the size of the solution</td>
<td></td>
</tr>
<tr>
<td>▶ increases the size of the equation (popped letters)</td>
<td></td>
</tr>
</tbody>
</table>
Noncrossing
- Decreases the size of the solution
- Decreases the size of the equation

Crossing
- Decreases the size of the solution
- Increases the size of the equation (popped letters)
- Decreases the size of the equation (compressed letters)
<table>
<thead>
<tr>
<th>Noncrossing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>decreases the size of the solution</td>
</tr>
<tr>
<td></td>
<td>decreases the size of the equation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Crossing</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>decreases the size of the solution</td>
</tr>
<tr>
<td></td>
<td>increases the size of the equation (popped letters)</td>
</tr>
<tr>
<td></td>
<td>decreases the size of the equation (compressed letters)</td>
</tr>
</tbody>
</table>

We will terminate, but what about the size?
Lemma (Fixed solution)

There are at most $kn + 2n$ different crossing letters, pairs, father-i-leaf pairs
Lemma (Fixed solution)

There are at most $kn + 2n$ different crossing letters, pairs, father-i-leaf pairs

Proof.

Each is associated with an occurrence of a (context) variable.
Lemma (Fixed solution)

There are at most $kn + 2n$ different crossing letters, pairs, father-i-leaf pairs

Proof.

Each is associated with an occurrence of a (context) variable.

Lemma (Fixed solution)

Uncrossing introduces at most $kn + 2n$ letters to the equation.
Lemma (Fixed solution)

There are at most \(kn + 2n \) different crossing letters, pairs, father-\(i \)-leaf pairs.

Proof.

Each is associated with an occurrence of a (context) variable.

Lemma (Fixed solution)

Uncrossing introduces at most \(kn + 2n \) letters to the equation.

Proof.

Each variable pops one up and one down for \(a \)-chains: it is compressed immediately afterwards.
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.

Size $m \rightarrow m'$:

\[
\begin{align*}
\text{Size} & \quad m \rightarrow m' \\
\text{Compressed} & \quad m' \\
\text{With} & \quad m' \\
\text{Better analysis} & \quad O(n^2 k^2) \text{ steps}
\end{align*}
\]
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.

Size $m \rightarrow m'$:

- popped letters: $+kn + 2n$
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.

Size $m \rightarrow m'$:
- popped letters: $+kn + 2n$
- only crossing: only $kn + 2n$ different pairs, chains, (f, i, c)
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.

Size $m \rightarrow m'$:
- popped letters: $+ kn + 2n$
- only crossing: only $kn + 2n$ different pairs, chains, (f, i, c)
- some covers $\frac{1}{2} \frac{m}{kn+2n}$ letters (requires some argument)
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.

Size $m \rightarrow m'$:

- popped letters: $+kn + 2n$
- only crossing: only $kn + 2n$ different pairs, chains, (f, i, e)
- some covers $\frac{1}{2} \frac{m}{kn + 2n}$ letters (requires some argument)

$$m' \leq m - \frac{m}{2(kn + 2n)} + kn + 2n \implies O(n^2k^2)$$
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.

Size $m \rightarrow m'$:

- popped letters: $+kn + 2n$
- only crossing: only $kn + 2n$ different pairs, chains, (f, i, c)
- some covers $\frac{1}{2} \frac{m}{kn+2n}$ letters (requires some argument)

$$m' \leq m - \frac{m}{2(kn + 2n)} + kn + 2n \implies \mathcal{O}(n^2k^2)$$

We terminate for positive, never terminate for negative.
Strategy

- If there is something non-crossing: compress it.
- Only crossing: choose one that minimises the equation.

Size \(m \rightarrow m' \):

- popped letters: +\(kn + 2n \)
- only crossing: only \(kn + 2n \) different pairs, chains, \((f, i, c)\)
- some covers \(\frac{1}{2} \frac{m}{kn+2n} \) letters (requires some argument)

\[
m' \leq m - \frac{m}{2(kn + 2n)} + kn + 2n \implies O(n^2k^2)
\]

We terminate for positive, never terminate for negative.

With better analysis

- termination in \(O(poly(n) \log N) \) steps (\(N \): size of the solution)
- space \(O(nk^2) \)
Regular constraints
(Nondeterministic) tree automaton

<table>
<thead>
<tr>
<th>States $Q \supseteq F$: accepting states</th>
</tr>
</thead>
<tbody>
<tr>
<td>For each $f \in \Sigma$ there is $\delta_f \subseteq Q^{\text{rank}(f)+1}$ (transition function/relation)</td>
</tr>
<tr>
<td>Q-labelling consistent with transition functions</td>
</tr>
<tr>
<td>Accepting: root label in F</td>
</tr>
</tbody>
</table>
Regular languages

(Nondeterministic) tree automaton

States $Q \supseteq F$: accepting states
For each $f \in \Sigma$ there is $\delta_f \subseteq Q^{\text{rank}(f)+1}$ (transition function/relation)
Q-labelling consistent with transition functions
Accepting: root label in F

Generalize transition to arbitrary trees with holes:
t with k arguments has transition $\delta_t \subseteq Q^{k+1}$:
$\{(q_1, \ldots, q_k, q_{k+1}) : (q_1, \ldots, q_k, q_{k+1}) \in \delta_t \iff \text{there is a } Q\text{-labeling with holes labelled } q_1, \ldots, q_k \text{ and root } q_{k+1}\}$.
Regular languages

(Nondeterministic) tree automaton

- **States** $Q \supseteq F$: accepting states
- For each $f \in \Sigma$ there is $\delta_f \subseteq Q^{\text{rank}(f)+1}$ (transition function/relation)
- Q-labelling consistent with transition functions
- Accepting: root label in F

Generalize transition to arbitrary trees with holes:
- t with k arguments has transition $\delta_t \subseteq Q^{k+1}$:
- $(q_1, \ldots, q_k, q_{k+1}) \in \delta_t \iff$ there is a Q-labeling with holes labelled q_1, \ldots, q_k and root q_{k+1}.

$$
\begin{align*}
\delta_f(\cdot, \cdot) &= \{(q, q', p) : p \in \{q + 1, q'\}\} \\
\delta_f(f(\cdot, \cdot), \cdot) &= \{(q, q', q'', p) : p \in \{q + 2, q' + 1, q''\}\}
\end{align*}
$$
Regular constraints

Constraints: given automaton N declare

- $\delta^N_{S(x)} \subseteq Q$
- $\delta^N_{S(X)} \subseteq Q^2$
- $\delta^N_{S(u)} \subseteq Q$
Regular constraints

Constraints: given automaton N declare

- $\delta^N_S(x) \subseteq Q$
- $\delta^N_S(X) \subseteq Q^2$
- $\delta^N_S(u) \subseteq Q$

Do this separately for several automata.
Vector of transition functions.
Regular constraints

Constraints: given automaton N declare

- $\delta^N_{S(x)} \subseteq Q$
- $\delta^N_{S(X)} \subseteq Q^2$
- $\delta^N_{S(u)} \subseteq Q$

Do this separately for several automata.

Vector of transition functions.

- EXPTIME-hard (nonemptiness of intersection of tree automata)
- NP-equivalent to other natural formulations
Regular constraints

Constraints: given automaton N declare

- $\delta^N_{S(x)} \subseteq Q$
- $\delta^N_{S(X)} \subseteq Q^2$
- $\delta^N_{S(u)} \subseteq Q$

Do this separately for several automata.

Vector of transition functions.

- EXPTIME-hard (nonemptiness of intersection of tree automata)
- NP-equivalent to other natural formulations

Extend the algorithm.
Easy

Compression: When a, b are compressed:
\[\delta_c \leftarrow \delta_a \circ \delta_b \]

Popping: when x pops a: set δ'_x so that
\[\delta_x = \delta_a \circ \delta'_x \]
Extensions

Easy

Compression: When a, b are compressed: $\delta_c \leftarrow \delta_a \circ \delta_b$

Popping: when x pops a: set δ'_x so that $\delta_x = \delta_a \circ \delta'_x$

Less easy

- Size of the transition function?
- Size of the signature?

We cannot trim—this affects transition function.
Transition functions
Each needed transition δ is in one of the forms:
- $\delta \in Q$, so with 0 parameters (not so many)
- $\delta \in Q^2$, so with 1 parameter (not so many)
- is a projection of a transition from the input
<table>
<thead>
<tr>
<th>Transition functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Each needed transition δ is in one of the forms:</td>
</tr>
<tr>
<td>- $\delta \in Q$, so with 0 parameters (not so many)</td>
</tr>
<tr>
<td>- $\delta \in Q^2$, so with 1 parameter (not so many)</td>
</tr>
<tr>
<td>- is a projection of a transition from the input</td>
</tr>
</tbody>
</table>

Consequence of the compression operations. This is **not robust**!
Transition functions

Each needed transition δ is in one of the forms:

- $\delta \in Q$, so with 0 parameters (not so many)
- $\delta \in Q^2$, so with 1 parameter (not so many)
- is a projection of a transition from the input

Consequence of the compression operations. This is not robust!

Signature

Add $a_{\delta_1, \ldots, \delta_\ell}$ to Σ for each $\delta_1, \ldots, \delta_\ell$ as above and realised by a tree.

- equisatisfiable
- this allows trimming
- Σ is stored using an EXPTIME oracle (verified at popping)
Transition functions

Each needed transition \(\delta \) is in one of the forms:
- \(\delta \in Q \), so with 0 parameters (not so many)
- \(\delta \in Q^2 \), so with 1 parameter (not so many)
- is a projection of a transition from the input

Consequence of the compression operations. This is not robust!

Signature

Add \(a_{\delta_1, \ldots, \delta_\ell} \) to \(\Sigma \) for each \(\delta_1, \ldots, \delta_\ell \) as above and realised by a tree.
- equisatisfiable
- this allows trimming
- \(\Sigma \) is stored using an EXPTIME oracle (verified at popping)
 - EXPTIME: exponentially many different transition vectors
 - sometimes the oracle is simpler (below EXPTIME)
Open problems

- computational complexity (maybe in NP?)
 - lower bound already for very simple word equations (encoding of integer programming)
 - enough to show exponential size of smallest solution
Open problems

- computational complexity (maybe in NP?)
 - lower bound already for very simple word equations (encoding of integer programming)
 - enough to show exponential size of smallest solution
- One-step term rewriting
 - existential formulas: solvable by context unification
 - positive theory?
 - existential theory?
Open problems

- Computational complexity (maybe in NP?)
 - Lower bound already for very simple word equations (encoding of integer programming)
 - Enough to show exponential size of smallest solution

- One-step term rewriting
 - Existential formulas: solvable by context unification
 - Positive theory?
 - Existential theory?

- Fragment with one context variable (in P?)