Characterizing the Valuedness of Two-way Finite Transducers

Di-De Yen and Hsu-Chun Yen

Department of Electrical Engineering National Taiwan University

Outline

- Introduction and definitions
- The valuedness problem of two-way finite transducers
- A sufficient and necessary condition for the valuedness problem
- Future work

Introduction

- The Finite-valuedness Problem:
 Is there a constant C such that k ≤ C for all u?
- Main Result:
 We give a necessary and sufficient condition for the finite-valuedness of two-way finite transducers!

- Q: a finite set of states $\Rightarrow Q = \{p, q\}$
- Σ : a finite input alphabet $\Rightarrow \Sigma = \{a, b, c\}$
- Γ : a finite output alphabet $\Rightarrow \Gamma = \{a, b\}$
- q_0 : an initial state $\Rightarrow q_0 = p$
- F: a set of final states $\Rightarrow F = \{q\}$
- Δ : a finite set of transitions $(\Delta \subseteq Q \times \Sigma \times Q \times \Gamma^*)$

- Q: a finite set of states $\Rightarrow Q = \{p, q\}$
- Σ : a finite input alphabet $\Rightarrow \Sigma = \{a, b, c\}$
- Γ : a finite output alphabet $\Rightarrow \Gamma = \{a, b\}$
- q_0 : an initial state $\Rightarrow q_0 = p$
- *F*: a set of final states ⇒ *F* = {*q*}
- Δ : a finite set of transitions $(\Delta \subseteq Q \times \Sigma \times Q \times \Gamma^*)$

- Q: a finite set of states $\Rightarrow Q = \{p, q\}$
- Σ : a finite input alphabet $\Rightarrow \Sigma = \{a, b, c\}$
- Γ : a finite output alphabet $\Rightarrow \Gamma = \{a, b\}$
- q_0 : an initial state $\Rightarrow q_0 = p$
- F: a set of final states $\Rightarrow F = \{q\}$
- Δ : a finite set of transitions $(\Delta \subseteq Q \times \Sigma \times Q \times \Gamma^*)$

- Q: a finite set of states $\Rightarrow Q = \{p, q\}$
- Σ : a finite input alphabet $\Rightarrow \Sigma = \{a, b, c\}$
- Γ : a finite output alphabet $\Rightarrow \Gamma = \{a, b\}$
- q_0 : an initial state $\Rightarrow q_0 = p$
- *F*: a set of final states ⇒ *F* = {*q*}
- Δ : a finite set of transitions $(\Delta \subseteq Q \times \Sigma \times Q \times \Gamma^*)$

1FT
$$T = (Q, \Sigma, \Gamma, q_0, F, \Delta)$$

- Q: a finite set of states $\Rightarrow Q = \{p, q\}$
- Σ : a finite input alphabet $\Rightarrow \Sigma = \{a, b, c\}$
- Γ : a finite output alphabet $\Rightarrow \Gamma = \{a, b\}$
- q_0 : an initial state $\Rightarrow q_0 = p$
- *F*: a set of final states ⇒ *F* = {*q*}
- Δ : a finite set of transitions $(\Delta \subseteq Q \times \Sigma \times Q \times \Gamma^*)$

1FT
$$T = (Q, \Sigma, \Gamma, q_0, F, \Delta)$$

- Q: a finite set of states $\Rightarrow Q = \{p, q\}$
- Σ : a finite input alphabet $\Rightarrow \Sigma = \{a, b, c\}$
- Γ : a finite output alphabet $\Rightarrow \Gamma = \{a, b\}$
- q_0 : an initial state $\Rightarrow q_0 = p$
- F: a set of final states $\Rightarrow F = \{a\}$
- Δ : a finite set of transitions $(\Delta \subseteq Q \times \Sigma \times Q \times \Gamma^*)$
- T(u): the set of corresponding outputs of u
 ⇒ abb ∈ T(ababcba)
- R(T): {(u, v)|v∈ T(u), u∈ Σ*}
 ⇒ R(T) = {(u₁cu₂, prefix(u₁)prefix(u₂))|u₁, u₂∈ a, b*}

2FT
$$T = (Q, \Sigma, \Gamma, q_0, F, \Delta)$$

•
$$\Delta \subseteq Q \times (\Sigma \cup \{\triangleright, \triangleleft\}) \times Q \times \Gamma^* \times \{-1, 1\}$$

 π : q_0

$$\pi: q_0 \stackrel{\varepsilon}{\to} q_0$$

$$\pi: q_0 \stackrel{\varepsilon}{\to} q_0 \stackrel{b}{\to} q_0$$

•
$$R(T) = \{(u, uu) | u \in a, b^*\}.$$

- bbabbbab ∈ T(bbab).
- $R(T) = \{(u, uu) | u \in a, b^*\}.$
- Crossing sequence: a sequence in (Q × {−1,1})*.

•
$$C_{\pi}[3] = C_{\pi}[6] = (q_0, 1)(q, -1)(q_f, 1).$$

Another Example

Example

- $C_{\pi}[3] = (q_3, 1).$
- $C_{\pi}[4] = (q_4, 1)(q_9, 1)(q_{10}, 1).$
- $C_{\pi}[5] = (q_5, 1)(q_8, -1)(q_{11}, 1).$

Expressive Power

Notions of Valuedness

- **1** Single-valued: $|T(u)| \le 1$, $\forall u \in \Sigma^*$.
- 2 k-valued: $|T(u)| \le k$, $\forall u \in \Sigma^*$.
- **3** Finite-valued: k-valued, for some $k \in N$.
- Infinite-valued: not finite-valued.

Notions of Valuedness

- **○** Single-valued: $|T(u)| \le 1$, $\forall u \in \Sigma^*$.
- 2 k-valued: $|T(u)| \le k$, $\forall u \in \Sigma^*$.
- **3** Finite-valued: k-valued, for some $k \in N$.
- Infinite-valued: not finite-valued.

	1FT	2FT
Single-valued	D [Blattner, et al.,77]	D [Culik, et al.,87]
k-valued	D [Gurari, et al.,83]	D [Culik, et al.,86]
Finite-valued	D [Weber,90]	?

Notions of Valuedness

- **1** Single-valued: $|T(u)| \le 1$, $\forall u \in \Sigma^*$.
- 2 k-valued: $|T(u)| \le k$, $\forall u \in \Sigma^*$.
- **3** Finite-valued: k-valued, for some $k \in N$.
- Infinite-valued: not finite-valued.

	1FT	2FT
Single-valued	D [Blattner, et al.,77]	D [Culik, et al.,87]
k-valued	D [Gurari, et al.,83]	D [Culik, et al.,86]
Finite-valued	D [Weber,90]	?

We give a 'simple' necessary and sufficient condition for the infinite-valuedness of two-way finite transducers!

Characteristics of Infinite-valuedness

Theorem (Weber, 90)

A 1FT *T* is infinite-valued iff it satisfies criterion IV1 or IV2.

- Crossing sequence version of Weber's criteria ?!

(b) IV2: $v_1 \neq \epsilon$ and $\exists i, v_2(i) \neq v_3(i)$

• In general, there are infinitely many crossing sequences!

• In general, there are infinitely many crossing sequences!

• In general, there are infinitely many crossing sequences!

- In general, there are infinitely many crossing sequences!
- $\exists u$, T(u) is infinite iff there exists a π on u with a loop along which the output is not empty.

- In general, there are infinitely many crossing sequences!
- $\exists u$, T(u) is infinite iff there exists a π on u with a loop along which the output is not empty.
- From now on, we assume all 2FTs are bounded-crossing.

Transitivity

Known Results:

1FT:
$$p \xrightarrow{u_1|v_1} q$$
 and $q \xrightarrow{u_2|v_2} r \Rightarrow p \xrightarrow{u_1u_2|v_1v_2} r$.
2FA: $\mathbf{c} \xrightarrow{u_1} \mathbf{d}$ and $\mathbf{d} \xrightarrow{u_2} \mathbf{e} \Rightarrow \mathbf{c} \xrightarrow{u_1u_2} \mathbf{e}$

Transitivity

Known Results:

1FT:
$$p \xrightarrow{u_1|v_1} q$$
 and $q \xrightarrow{u_2|v_2} r \Rightarrow p \xrightarrow{u_1u_2|v_1v_2} r$.
2FA: $\mathbf{c} \xrightarrow{u_1} \mathbf{d}$ and $\mathbf{d} \xrightarrow{u_2} \mathbf{e} \Rightarrow \mathbf{c} \xrightarrow{u_1u_2} \mathbf{e}$

Can we derive a "similar result" for 2FTs?

Transitivity

Known Results:

1FT:
$$p \xrightarrow{u_1|v_1} q$$
 and $q \xrightarrow{u_2|v_2} r \Rightarrow p \xrightarrow{u_1u_2|v_1v_2} r$.
2FA: $\mathbf{c} \xrightarrow{u_1} \mathbf{d}$ and $\mathbf{d} \xrightarrow{u_2} \mathbf{e} \Rightarrow \mathbf{c} \xrightarrow{u_1u_2} \mathbf{e}$

- Can we derive a "similar result" for 2FTs?
- The answer is yes by incorporating the notion of 'patterns' of computations!

Patterns

- $p_1 \rightarrow p_2$: a right U-turn.
- $p_3 \rightarrow q_1$: a right traversal.
- $q_2 \rightarrow q_3$: a left U-turn.
- z: (right U-turn, right traversal, left U-turn).

Different Patterns between two Crossing Sequences

Output: $x_1 v_1 y_1 y_2 v_2 x_2 x_3 v_3 y_3$

Output: $x_1 w_1 x_2 x_3 w_2 y_1 y_2 x_3 y_3$

Z₁: (R-U, R-T, L-T, R-T, L-U)

Z2: (R-U, R-T, L-T)

Z₃: (R-U, R-U, R-T, L-U)

 \oplus : an operator (partial mapping) on patterns; e.g. $z_1 \oplus z_2 = z_3$

Lemma

$$\mathbf{c} \xrightarrow[z_1]{u_1 | (v_1, \dots, v_l)_{z_1}} \mathbf{d}, \mathbf{d} \xrightarrow[z_2]{u_2 | (w_1, \dots, w_m)_{z_2}} \mathbf{e} \Rightarrow \mathbf{c} \xrightarrow[z_1 \oplus z_2]{u_1 u_2 | (v_1, \dots, v_l)_{z_1} \oplus (w_1, \dots, w_m)_{z_2}} \mathbf{e}.$$

Idempotents

Definition

A pattern z is called an idempotent if $z \oplus z = z$.

Example

- $Z_1 \oplus Z_1 \neq Z_1$.
- $(z_1 \oplus z_1) \oplus (z_1 \oplus z_1) = (z_1 \oplus z_1).$

Lemma

If $z \oplus z$ exists, then $z' = \underbrace{z \oplus \cdots \oplus z}_{p}$ for some p and z' is an idempotent.

- Can we derive a "crossing sequence version" of criteria for infinite-valued 2FTs?
- Perhaps by replacing states and strings with crossing sequences and vectors of strings, respectively?

Length-conflicts and Position-conflicts

Given $v_1, v_2 \in \Gamma^*$ with $v_1 \neq v_2$, one of the following statements is true:

- $|v_1| \neq |v_2|$. (Length-conflict)
- $v_1(i) \neq v_2(i)$ for some *i*. (Position-conflict)

Length-conflicts and Position-conflicts

Given $v_1, v_2 \in \Gamma^*$ with $v_1 \neq v_2$, one of the following statements is true:

- $|v_1| \neq |v_2|$. (Length-conflict)
- $v_1(i) \neq v_2(i)$ for some *i*. (Position-conflict)

Given a 2FT T:

Length-conflict:

 $\forall n$, there are $u, v_1, ..., v_n$ such that $\forall i, (u, v_i) \in R(T)$ and $\forall i \neq j, v_i$ and v_j have a length-conflict.

Position-conflict:

 $\forall n$, there are $u, v_1, ..., v_n$ such that $\forall i, (u, v_i) \in R(T)$ and $\forall i \neq j, v_i$ and v_i have a position-conflict.

Proposition

A 2FT T is infinite-valued iff T has length-conflicts or position-conflicts.

For 1FTs,
 A∪B⇒ (IV1) ⇔ Length-conflict.
 C⇒ (IV2) ⇔ Position-conflict.

- For 1FTs,
 A∪B⇒ (IV1) ⇔ Length-conflict.
 C⇒ (IV2) ⇔ Position-conflict.
- Can we derive similar results for 2FTs?

- For 1FTs,
 A∪B⇒ (IV1) ⇔ Length-conflict.
 C⇒ (IV2) ⇔ Position-conflict.
- Can we derive similar results for 2FTs?
- The answer is yes. But, while considering the 'position-conflict' case, a more subtle argument is needed!

Theorem (Weber, 90)

A 1FT T has length-conflicts iff it satisfies criterion IV1.

Theorem (Weber, 90)

A 1FT T has length-conflicts iff it satisfies criterion IV1.

Example

- $|\alpha| \neq |\alpha\alpha|$.
- On $(abc)(ab^2c)...(ab^nc)$, there are n different outputs: $\alpha^2, \alpha^5,...,\alpha^{i+2(i+1)},...$, and α^{3n-1} .

Theorem

A 2FT T has length-conflicts iff it satisfies criterion CIV1.

- (IV2) is a sufficient condition but not a necessary condition for position-conflicts.
- For 1FTs without length-conflicts, (IV2) is a necessary and sufficient condition for position-conflicts.

IV2: $v_1 \neq \epsilon$ and $\exists i, v_2(i) \neq v_3(i)$

- (IV2) is a sufficient condition but not a necessary condition for position-conflicts.
- For 1FTs without length-conflicts, (IV2) is a necessary and sufficient condition for position-conflicts.

Example

- $|\alpha| \neq 0$.
- β and γ have a position-conflict.
- On a^n , there are 2n different outputs, $\beta \alpha^{n-1}, \gamma \alpha^{n-1}, \alpha \beta \alpha^{n-2}, \alpha \gamma \alpha^{n-2}, \dots, \alpha^{n-1} \beta$, and $\alpha^{n-1} \gamma$.

IV2: $v_1 \neq \epsilon$ and $\exists i, v_2(i) \neq v_3(i)$

CIV2: Non-empty String Modification

CIV2

There exists an accepting computation π along which there are crossing sequences \mathbf{c}, \mathbf{d} , patterns z_1, z_2, z_3 , strings $u \in \Sigma^+$, $w_1, \ldots, w_l, x_1, \ldots, x_m, x'_1, \ldots, x'_m, y_1, \ldots, y_n \in \Gamma^*$,

(The Original)

•
$$\mathbf{c} \xrightarrow{u|(w_1,\dots,w_l)_{Z_1}} \mathbf{c}$$
, • $\mathbf{c} \xrightarrow{u|(x_1,\dots,x_m)_{Z_2}} \mathbf{d}$,
• $\mathbf{c} \xrightarrow{u|(x'_1,\dots,x'_m)_{Z_2}} \mathbf{d}$, • $\mathbf{d} \xrightarrow{u|(y_1,\dots,y_n)_{Z_3}} \mathbf{d}$,

and for some index $\iota \in [m]$, there is a position-conflict between x_{ι} and x_{ι}'

- (The Modified)
 - $x_i(x_i')$ corresponds to either a left or a right traversal between some state p in \mathbf{c} and some state q in \mathbf{d} , and
 - (right traversal): if $\pi: \cdots p_1 \xrightarrow{u|w_j} p \xrightarrow{u|x_i} q \xrightarrow{u|y_k} q_1 \cdots$, then $\sum_{t=1}^j |w_t| \neq \sum_{t=1}^{k-1} |y_t|$
 - (left traversal): if $\pi : \cdots \ q_1 \xrightarrow{u|y_k} q \xrightarrow{u|x_k} p \xrightarrow{u|w_j} p_1 \cdots$, then $\sum_{t=1}^{j-1} |w_t| \neq \sum_{t=1}^k |y_t|$

Theorem

Let T be a bounded-crossing 2FT having no length-conflicts. T is infinite-valued iff it satisfies CIV2.

Proof.

- (=) The 'only if' direction can be derived easily.
- (⇒) The 'if' direction is divided into the following steps:
 - Lemma A
 - 2 Two base cases
 - General cases

Lemma A

Given an infinite-valued 2FT T without length-conflicts, then

3
$$\mathbf{c} \xrightarrow{u|(x'_1,...,x'_m)_{z_2}} \mathbf{d}$$
,

4
$$\frac{u|(y_1,...,y_n)_{z_3}}{z_2}$$
 d,

5
$$|x_i| = |x_i'|$$
, $1 \le i \le m$, x_i and x_i' have a position conflict, for some i ,

1
$$|x_t| = |x_t'| > \psi$$
, and

$$oldsymbol{0}$$
 z_1 and z_3 are idempotents.

for some $u \in \Sigma^+$, ect.

Two Base Cases

- All properties in Lemma A are satisfied.
- 2 $p_2 = p_1 = p$.
- $q_2 = q_1 = q_1$
- Computations from p' to p_1 and from q_1 to q' are sequences of U-turns.

Figure: Base case: traversal (left); U-turn (right).

Base Case: Traversal

• Concatenate computation $\mathbf{c} \xrightarrow[Z_1]{u \mid \vec{w}} \mathbf{c}$ and $\mathbf{d} \xrightarrow[Z_3]{u \mid \vec{y}} \mathbf{d}$ to the left and to the right of the original computation. (Since $\mathbf{c} = \mathbf{c}$ and $\mathbf{d} = \mathbf{d}$.)

Base Case: Traversal

- Concatenate computation $\mathbf{c} \stackrel{u|\vec{w}}{\underset{z_1}{\longleftarrow}} \mathbf{c}$ and $\mathbf{d} \stackrel{u|\vec{y}}{\underset{z_3}{\longleftarrow}} \mathbf{d}$ to the left and to the right of the original computation. (Since $\mathbf{c} = \mathbf{c}$ and $\mathbf{d} = \mathbf{d}$.)
- · Shift.

Base Case: Traversal

- Since T has no length-conflicts,
 - $\sum_{i=1}^{l_1} |w_i| = \sum_{i=1}^{n_1} |y_i|$ and $\sum_{i=l_1+1}^{l_2} |w_i| \neq 0$.
- Therefore, $\sum_{i=1}^{l_2} |w_i| > \sum_{i=1}^{n_1} |y_i|$. (\Rightarrow CIV2 The Modified)

Base Case: U-turn

Does not exist!

General Case

• $p_2 \neq p_1$

General Case

• $p_2 \neq p_1$

- Keep concatenating computation $\mathbf{c} \stackrel{u|\vec{w}}{\underset{z_1}{\longleftarrow}} \mathbf{c}$ and $\mathbf{d} \stackrel{u|\vec{y}}{\underset{z_3}{\longleftarrow}} \mathbf{d}$ to the left and to the right of the original computation.
- 2 Then, $p_i = p_2$ and $q_i = q_2$, for each $i > 2 \Rightarrow$ Base Cases.

General Case

• $p_2 \neq p_1$

Lemma

If z_1 and z_3 are idempotents and $z_1 \oplus z_2 \oplus z_3$ exists, then $\underbrace{z_1 \oplus \cdots \oplus z_1}_n \oplus z_2 \oplus \underbrace{z_3 \oplus \cdots \oplus z_3}_n = z_1 \oplus z_2 \oplus z_3$, for all n.

Future Work

- Decidability of finite-valuedness:
 We surmise that the problem is decidable, perhaps through a detailed analysis of our techniques.
- ② Decomposition of finite-valued 2FTs. In view of the decomposability result of finite-valued 1FTs, can similar results be obtained?
- One-way definability of finite-valued 2FTs.
- Finite-valuedness of streaming string transducers.
 (D2FT = DSST = MSO)

Thank You for Your Time!