Pamela Fleischmann, Joel D. Day, Florin Manea, and Dirk Nowotka

fpa@informatik.uni-kiel.de

August, 9th

Kiel University Dependable Systems Group

Information Loss

k-Spectra

Information Loss

informal definition:

deleting arbitrary letters from a word (preserving the order) results in a scattered factor of this word

Definition (Scattered Factor, (Scattered) Subword)

 $v = v_1 \dots v_n \in \Sigma^*$ scattered factor of w iff

$$\exists u_0 \dots u_n \in \Sigma^* : w = u_0 v_1 u_1 v_2 \dots v_{n-1} u_{n-1} v_n u_n.$$

 \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)

- \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)
- set of all scattered factors of w of length k is the k-spectrum ScatFact_k(w)

- \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)
- \bigcirc set of all scattered factors of *w* of length *k* is the *k*-spectrum ScatFact_k(*w*)

Example: abba

{abba}	4-spectrum	
$\{aba, bba, abb\}$	3-spectrum	
$\{aa, ab, bb, ba\}$	2-spectrum	
{a,b}	1-spectrum	

- \bigcirc set of all scattered factors of *w* is the spectrum ScatFact(*w*)
- \bigcirc set of all scattered factors of *w* of length *k* is the *k*-spectrum ScatFact_k(*w*)

Example: abba

{abba}	4-spectrum	
$\{aba, bba, abb\}$	3-spectrum	
$\{aa, ab, bb, ba\}$	2-spectrum	
{a,b}	1-spectrum	

We are not considering multisets.

Given $S \subseteq \Sigma^*$ decide whether S is the spectrum of some word w.

Given $S \subseteq \Sigma^*$ decide whether S is the spectrum of some word w.

Problem

Given a k-spectrum decide whether it is independent, *e.g.* {ab, ba, aa} *is not independent since* aa *can be deduced from* ab *and* ba.

Given $S \subseteq \Sigma^*$ decide whether S is the spectrum of some word w.

Problem

Given a k-spectrum decide whether it is independent, *e.g.* {ab, ba, aa} *is not independent since* aa *can be deduced from* ab *and* ba.

Problem

Determine the index of the equivalence relation that relates word with the same spectrum.

Middle Step Between S and w

Middle Step Between S and w

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ and $k \in \mathbb{N}$ with $|\operatorname{ScatFact}_k(w)| = n$.

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ and $k \in \mathbb{N}$ with $|\operatorname{ScatFact}_k(w)| = n$.

or more restricted:

Problem

Decide for given $n, k \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ with $|\operatorname{ScatFact}_k(w)| = n$.

Decide for a given $n \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ and $k \in \mathbb{N}$ with $|\operatorname{ScatFact}_k(w)| = n$.

or more restricted:

Problem

Decide for given $n, k \in \mathbb{N}$ whether there exists $w \in \Sigma^*$ with $|\operatorname{ScatFact}_k(w)| = n$.

To start with we only consider a binary alphabet $\Sigma = \{a, b\}$.

$$\cap$$
 n = 3, *k* = 2: *w* = aabb

○
$$n = 3, k = 2$$
: $w = aabb$
○ $n = k + 2, k \in \mathbb{N}_{>2}, |w|_a = |w|_b$ does not have a solution

○
$$n = 3, k = 2$$
: $w = aabb$
○ $n = k + 2, k \in \mathbb{N}_{>2}, |w|_a = |w|_b$ does not have a solution
○ $n = 2^k, k \in \mathbb{N}$: $w = (ab)^k$

○
$$n = 3, k = 2$$
: $w = aabb$
○ $n = k + 2, k \in \mathbb{N}_{>2}, |w|_a = |w|_b$ does not have a solution
○ $n = 2^k, k \in \mathbb{N}$: $w = (ab)^k$
○ $n = a^k, k \in \mathbb{N}$: $w = (ab)^k$

 \bigcirc *n* square number at least 4, $k := 2(\sqrt{n} - 1)$: $w = a^{\frac{\kappa}{2}}b^k a^{\frac{\kappa}{2}}$

Binary word $w \in \{a, b\}^*$ weakly *c*-balanced for a $c \in \mathbb{N}_0$ iff

$$||w|_{\mathsf{a}} - |w|_{\mathsf{b}}| = c.$$

Binary word $w \in \{a, b\}^*$ weakly *c*-balanced for a $c \in \mathbb{N}_0$ iff

$$||w|_{\mathsf{a}} - |w|_{\mathsf{b}}| = c.$$

Obviously for every $w \in \{a, b\}$ exists $c \in \mathbb{N}_0$ such that w is *c*-balanced.

○ ScatFact_k(
$$\overline{w}$$
) = { \overline{u} | $u \in$ ScatFact_k(w)}
○ ScatFact_k(w^R) = { u^R | $u \in$ ScatFact_k(w)}

○ ScatFact_k(
$$\overline{w}$$
) = { \overline{u} | $u \in$ ScatFact_k(w)}
○ ScatFact_k(w^R) = { u^R | $u \in$ ScatFact_k(w)}

$$|\operatorname{ScatFact}_k(w)| = |\operatorname{ScatFact}_k(w^R)| = |\operatorname{ScatFact}_k(\overline{w})|.$$

○ ScatFact_k(
$$\overline{w}$$
) = { \overline{u} | $u \in$ ScatFact_k(w)}
○ ScatFact_k(w^R) = { u^R | $u \in$ ScatFact_k(w)}

 $|\operatorname{ScatFact}_k(w)| = |\operatorname{ScatFact}_k(w^R)| = |\operatorname{ScatFact}_k(\overline{w})|.$

a < b assumed: only consider the lexicographically smallest element in such an equivalence class

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

Proof:

○ all $a^r b^s$ for r + s = n - 1 are the scattered factors of length n - 1

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

Proof:

○ all $a^r b^s$ for r + s = n - 1 are the scattered factors of length n - 1

○ *n* possibilities

For all $n \in \mathbb{N}$ the k-spectrum of $w = a^k b^k$ for k = n - 1 has n elements, i.e. $|\text{ScatFact}_{n-1}(a^{n-1}b^{n-1})| = n$.

Corollary

 $S_n = \{a^r b^s | r + s = n \in \mathbb{N}\}$ is a scattered factor set for all $n \in \mathbb{N}$.

Given $k, n \in \mathbb{N}$ with $n - 1 \leq k$ set c = k - n + 1 and consider $w = a^k b^{k-c}$. Then for all $i \in [c]_0$ the (k - i)-spectrum of w has cardinality n.

Given $k, n \in \mathbb{N}$ with $n - 1 \le k$ set c = k - n + 1 and consider $w = a^k b^{k-c}$. Then for all $i \in [c]_0$ the (k - i)-spectrum of w has cardinality n.

Proof:

- \bigcirc *i* = 0: a^{*r*}b^{*s*} with *r* + *s* = *k* \rightsquigarrow *k c* + 1 = *n* possibilities
- $i \neq 0$: all the scattered factor are just *shortened* for the (k i)-spectra

○ Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- \bigcirc *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets
- which scattered factor sets have cardinality $n \in \mathbb{N}$

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets
- which scattered factor sets have cardinality $n \in \mathbb{N}$
- for a fixed $c \in \mathbb{N}$ and *c*-balanced words: which cardinalities are *reachable*

- Given $n \in \mathbb{N}$ for each *c* we have c + 1 different sets being a spectrum of cardinality *n*.
- *k*-spectrum of $w = a^2b^4a^2$ has cardinality 9
- abba is a scattered factor of *w* and not in the aforementioned sets
- \bigcirc which scattered factor sets have cardinality $n \in \mathbb{N}$
- for a fixed $c \in \mathbb{N}$ and *c*-balanced words: which cardinalities are *reachable*

We were not happy! We would like to fully characterise for given *c* and word-length which cardinalities are reachable.

Lemma

 $w \in \Sigma^*, k, c \in \mathbb{N}_0$ with $c \leq k$:

$$\forall i \in [c]_0 : |\operatorname{ScatFact}_{k-i}(w)| = k - c + 1 \quad iff \quad w = \mathsf{a}^k \mathsf{b}^{k-c}.$$

Moreover $|\text{ScatFact}_{k-i}(w)| \ge k - c + 1$ for all $i \in [c]_0$

Lemma

 $w \in \Sigma^*, k, c \in \mathbb{N}_0$ with $c \leq k$:

$$\forall i \in [c]_0 : |\operatorname{ScatFact}_{k-i}(w)| = k - c + 1 \quad iff \quad w = \mathsf{a}^k \mathsf{b}^{k-c}.$$

Moreover $|\text{ScatFact}_{k-i}(w)| \ge k - c + 1$ for all $i \in [c]_0$

Proof idea for remaining part:

○ suppose $w \neq a^k b^{k-c}$ (neither one of the symmetric cases)

 $\bigcirc \Rightarrow w = w_1 a b a w_2$

 \bigcirc induction on word-length

Max. Card. for Weakly-O-Balanced Words of Length 2k

Theorem

 $w \in \Sigma^*$:

$\operatorname{ScatFact}_k(w) = \Sigma^k \quad iff \quad \{\operatorname{ab}, \operatorname{ba}\}^k \cap \operatorname{ScatFact}_{2k}(w) \neq \emptyset$

Max. Card. for Weakly-O-Balanced Words of Length 2k

Theorem

 $w \in \Sigma^*$:

 $\operatorname{ScatFact}_k(w) = \Sigma^k \quad iff \quad \{\operatorname{ab}, \operatorname{ba}\}^k \cap \operatorname{ScatFact}_{2k}(w) \neq \emptyset$

Conclusion: for $w \in \Sigma^{2k}$ weakly-0-balanced

 $\operatorname{ScatFact}_k(w) = \Sigma^k \quad \text{iff} \quad w \in \{\operatorname{ab}, \operatorname{ba}\}^k,$

Max. Card. for Weakly-O-Balanced Words of Length 2k

Theorem

 $w\in \Sigma^*:$

$$\operatorname{ScatFact}_k(w) = \Sigma^k \quad iff \quad \{\operatorname{ab}, \operatorname{ba}\}^k \cap \operatorname{ScatFact}_{2k}(w) \neq \emptyset$$

Conclusion: for $w \in \Sigma^{2k}$ weakly-0-balanced

ScatFact_k(
$$w$$
) = Σ^k iff $w \in \{ab, ba\}^k$,

i.e. $w \in {ab, ba}^k$ iff $|ScatFact_k(w)| = 2^k$

unfortunately the result for the maximal cardinality is not generalisable in the same way as for the minimal one

k	ababa	abbaa	
1	Σ	Σ	prev. result
2	Σ^2	Σ^2	prev. result
3	$\Sigma^3 \setminus \{b^3\}$	$\{a^3, aba, ab^2, ba^2, b^2a\}$	

unfortunately the result for the maximal cardinality is not generalisable in the same way as for the minimal one

k	ababa	abbaa	
1	Σ	Σ	prev. result
2	Σ^2	Σ^2	prev. result
3	$\Sigma^3 \setminus \{b^3\}$	$\{a^3, aba, ab^2, ba^2, b^2a\}$	

for c > 0, the switches from a to b and v.v. matter!

For all
$$i \le k - c$$
, $c \in [k]_0$, $k \in \mathbb{N}$
 $|\operatorname{ScatFact}_i((\operatorname{ab})^{k-c} \operatorname{a}^c)| =$
 $1 + 2^{k-c} + \sum_{j \in [(i+c)-k-1]_0} |\operatorname{ScatFact}_{i-j-1}((\operatorname{ab})^{k-c-1} \operatorname{a})|$

with $|\operatorname{ScatFact}_{\ell}(\operatorname{Pref}_{n}(\operatorname{ab})^{\omega})| = \sum_{j \in [n-\ell]_{0}} {\ell \choose n-\ell-j}$

For all
$$i \le k - c$$
, $c \in [k]_0$, $k \in \mathbb{N}$
 $|\text{ScatFact}_i((ab)^{k-c}a^c)| =$
 $1 + 2^{k-c} + \sum_{j \in [(i+c)-k-1]_0} |\text{ScatFact}_{i-j-1}((ab)^{k-c-1}a)|$

with $|\operatorname{ScatFact}_{\ell}(\operatorname{Pref}_{n}(\operatorname{ab})^{\omega})| = \sum_{j \in [n-\ell]_{0}} {\ell \choose n-\ell-j}$

Proof-Idea.

- \bigcirc (*i*₁,...,*i*_m) deleting sequence \rightsquigarrow scattered factor
- \odot several deleting sequences lead to the same scattered factor
- \bigcirc count only one of these sequences

k-spectra for weakly-Obalanced words of length 2k

Properties of weakly-O-balanced words

\bigcirc same amount of as and bs

- \bigcirc same amount of as and bs
- always even length

- \bigcirc same amount of as and bs
- always even length
- \bigcirc the *k*-spectra has at most 2^{*k*} elements

Spectrum of *k*-spectra

Proof for " $|\text{ScatFact}_k(w)| = k + 1$ iff $w = a^k b^k$ gives also that k + 2 is not reachable!

Proof for " $|\text{ScatFact}_k(w)| = k + 1$ iff $w = a^k b^k$ gives also that k + 2 is not reachable!

if the as and bs are not nicely ordered we have at least one switch from b to a

if the as and bs are not nicely ordered we have at least one switch from b to a

Lemma

The k-spectrum of a weakly-o-balanced word $w \in \Sigma^*$ has cardinality 2k iff w is either $a^{k-1}bab^{k-1}$ or $a^{k-1}b^ka$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2k \Leftrightarrow w \in \{a^{k-1}bab^{k-1}, a^{k-1}b^ka\}.$$

A LING

if the as and bs are not nicely ordered we have at least one switch from b to a

Lemma

The k-spectrum of a weakly-o-balanced word $w \in \Sigma^*$ has cardinality 2k iff w is either $a^{k-1}bab^{k-1}$ or $a^{k-1}b^ka$, i.e.

$$|\operatorname{ScatFact}_k(w)| = 2k \Leftrightarrow w \in \{a^{k-1}bab^{k-1}, a^{k-1}b^ka\}.$$

Our proof also shows

○ If *w* is neither $a^k b^k$ nor $a^{k-1}bab^{k-1}$ nor $a^{k-1}b^k a$, then the cardinality is greater than 2k

Spectrum of *k*-spectra

 $a^{k-1}b^k$ a generalisable to $a^{k-i}b^ka^i$ for $i \in \left\lfloor \lfloor \frac{k}{2} \rfloor \right]$:

$$|\operatorname{ScatFact}_k(a^{k-i}b^ka^i)| = k(i+1) - i^2 + 1$$

Spectrum of *k*-spectra

 $a^{k-1}b^ka$ generalisable to $a^{k-i}b^ka^i$ for $i \in \left\lfloor \lfloor \frac{k}{2} \rfloor \right\rfloor$:

$$|$$
ScatFact_k $(a^{k-i}b^ka^i)| = k(i+1) - i^2 + 1$

Promising news: the *k*-spectra of weakly-o-balanced words cannot have cardinality 2k + i for $i \in [k - 4]$

Promising news: the *k*-spectra of weakly-o-balanced words cannot have cardinality 2k + i for $i \in [k - 4]$

but (unfortunately)

but (unfortunately)

Lemma

The k-spectrum of $a^{k-1}b^2ab^{k-2}$ has exactly 3k - 2 elements.

but (unfortunately)

Lemma

The k-spectrum of $a^{k-1}b^2ab^{k-2}$ has exactly 3k - 2 elements.

and this result is generalisable

Lemma

For
$$k \ge 5$$
 and $i \in [k-1]$
 \bigcirc |ScatFact_k($a^{k-2}b^{i}ab^{k-i}a$)| = $k(2i+2) - 6i+2$
 \bigcirc |ScatFact_k($a^{k-2}b^{i}a^{2}b^{k-i}$)| = $k(2i+1) - 4i+2$

ALL ONLY STORE

$$k \ge 38$$

$$3k - 3 - 3 - 4k - 8 - 5k - 15 - 6k - 24 - 7k - 35 - 8k - 48 - 10 - 7k - 10 - 8k - 16$$

We saw already that the cardinality 2^k is reached iff $w = (ab)^k$.

We saw already that the cardinality 2^k is reached iff $w = (ab)^k$.

Lemma

The k-spectrum of w has cardinality $2^k - 1$ iff $w = (ab)^i a^2 b^2 (ab)^{k-i-2}$ for some $i \in [k-2]$.

We saw already that the cardinality 2^k is reached iff $w = (ab)^k$.

Lemma

The k-spectrum of w has cardinality $2^k - 1$ iff $w = (ab)^i a^2 b^2 (ab)^{k-i-2}$ for some $i \in [k-2]$.

Proof:

 \bigcirc "=" \checkmark

○ "⇒" if there is a scattered factor not of the form $b^{i+1}a^{k-i-1}$ then less than $2^k - 1$ element are in the *k*-spectrum

Overview for weakly-O-balanced words

k-Spectra

