Coinductive algorithms for Büchi automata

Denis Kuperberg Laureline Pinault Damien Pous

LIP, Ens de Lyon

DLT, Warsaw
August 5th 2019
Introduction and motivations

Büchi automata (NBWs):

\[
\langle S, T \rangle \text{ with } T : A \rightarrow 3^{S^2}
\]

\[\mathcal{L}(A) : A^\omega \rightarrow 2\]

Example:

\[
\begin{array}{c}
\text{a, b} \\
\text{0} \\
\text{b} \\
\text{1} \\
\text{a}
\end{array}
\]

\[\mathcal{L} = (a + b)^* b a^\omega\]

Problem:

\[\mathcal{L}(A) = \mathcal{L}(B)?\]

PSPACE-Complete

Modelize:

- Programs and systems
- Specifications of systems (eg. LTL formulae)

Application:

Verification of systems
Past works
Existing algorithms

<table>
<thead>
<tr>
<th>Problem</th>
<th>NFAs</th>
<th>NBWs</th>
</tr>
</thead>
</table>
| **Inclusion** | Antichain-based Algorithms
[Wulf, Doyen, Henzinger, Raskin ’06]
[Abdulla, Chen, Holik, et al ’11]
[Doyen, Raskin ’10]
Tools: Powerset construction and subsumption techniques | Antichain-based Algorithms
[Fogarty, Vardi ’09 ’10]
[Doyen, Raskin ’09 ’10]
[Abdulla, Chen, Clemente, et al ’10 ’11]
Tools: Ranked-based or Ramsey-based complementation |
| **Equality** | Coinduction-based Algorithm
HKC [Bonchi, Pous ’13]
Tools: Powerset construction and up-to techniques | ? |
HKC [Bonchi,Pous '13]

Principle: Try to compute a bisimulation *up to congruence*.

Input: A NFA \mathcal{A} and two sets of states X, Y.

Output: $true$ if X and Y recognize the same language; $false$ otherwise.

- Explore the powerset construction on the fly.
- Examine pairs of sets of states:
 - Check if the accepting conditions match, if not return $false$.
 - If the pair is in the congruence closure of already seen pairs then skip it.
 - Add successors to the list of pairs to check.
- If no more pair to look at, return $true$.

![Diagram](https://via.placeholder.com/150)
HKC [Bonchi,Pous '13]

Principle: Try to compute a bisimulation up to congruence.

Input: A NFA A and two sets of states X, Y.

Output: $true$ if X and Y recognize the same language; $false$ otherwise.

- Explore the powerset construction on the fly
- Examine pairs of sets of states
 - Check if the accepting conditions match, if not return $false$
 - If the pair is in the congruence closure of already seen pairs then skip it
 - Add successors to the list of pairs to check
- If no more pair to look at, return $true$
Principle: Try to compute a bisimulation up to congruence.

Input: A NFA \mathcal{A} and two sets of states X, Y.

Output: $true$ if X and Y recognize the same language; $false$ otherwise.

- Explore the powerset construction on the fly
- Examine pairs of sets of states
 - Check if the accepting conditions match, if not return $false$
 - If the pair is in the congruence closure of already seen pairs then skip it
 - Add successors to the list of pairs to check
- If no more pair to look at, return $true$
Principle: Try to compute a bisimulation up to congruence.

Input: A NFA \mathcal{A} and two sets of states X, Y.
Output: $true$ if X and Y recognize the same language; $false$ otherwise.

- Explore the powerset construction on the fly
- Examine pairs of sets of states
 - Check if the accepting conditions match, if not return $false$
 - If the pair is in the congruence closure of already seen pairs then skip it
 - Add successors to the list of pairs to check
- If no more pair to look at, return $true$
HKC [Bonchi,Pous '13]

Principle: Try to compute a bisimulation *up to congruence*.

Input: A NFA \mathcal{A} and two sets of states X, Y.

Output: *true* if X and Y recognize the same language; *false* otherwise.

- Explore the powerset construction on the fly
- Examine pairs of sets of states
 - Check if the accepting conditions match, if not return *false*
 - If the pair is in the congruence closure of already seen pairs then skip it
 - Add successors to the list of pairs to check
- If no more pair to look at, return *true*
Principle: Try to compute a bisimulation up to congruence.

Input: A NFA A and two sets of states X, Y.
Output: true if X and Y recognize the same language; false otherwise.

- Explore the powerset construction on the fly
- Examine pairs of sets of states
 - Check if the accepting conditions match, if not return false
 - If the pair is in the congruence closure of already seen pairs then skip it
 - Add successors to the list of pairs to check
- If no more pair to look at, return true
Difficulties for adapting HKC to NBWs

- Non local acceptation conditions
- No proper determinization operation
Ultimately periodic words [Calbrix, Nivat, Podelski '93]

\[UP(\mathcal{L}) = \{ uv^\omega \mid uv^\omega \in \mathcal{L} \} \quad \mathcal{L}^\$ = \{ u$v \mid uv^\omega \in \mathcal{L} \} \]

Fact 1

If \(\mathcal{L}_1 \) and \(\mathcal{L}_2 \) are \(\omega \)-regular then \(\mathcal{L}_1 = \mathcal{L}_2 \) if and only if \(UP(\mathcal{L}_1) = UP(\mathcal{L}_2) \)

▶ **Proof** Closure properties of rational \(\omega \)-languages + non-empty languages contain at least one ultimately periodic word.

Fact 2

If \(\mathcal{L} \) is \(\omega \)-regular then \(\mathcal{L}^\$ \) is regular.

▶ **Proof** Construction of Calbrix, Nivat and Podelski.
This paper
Big picture

\[\omega\text{-regular} \quad \text{ultimately periodic} \quad \text{regular} \]

\[\mathcal{L} \subseteq A^\omega \quad UP(\mathcal{L}) \subseteq A^\omega \quad \mathcal{L}^\$ \subseteq (A \cup \{\$\})^* \]

\[\mathcal{L}_1 = \mathcal{L}_2 \quad UP(\mathcal{L}_1) = UP(\mathcal{L}_2) \quad \mathcal{L}_1^\$ = \mathcal{L}_2^\$ \]

\[\text{Fact 1} \quad \iff \quad \text{Fact 2} \]

\[\frac{\text{NBW}}{A} \quad \frac{\text{(revisited) construction of Calbrix, Nivat and Podelski}}{[x]A = [y]A} \quad \frac{\text{NFA}}{A^\$} \]

\[|A| = n \quad |A^\$| = n + n3n^2 \]

\[[x]A = [y]A \quad [x]A^\$ = [y]A^\$ \]

\[\Rightarrow \text{HKC on } A^\$ + \text{Exploiting the structure of the construction} \]
Construction of $A^\$

Consider a NBW A with n states.

- Construct the (Büchi) transition monoid of A
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

$L(A) = (a + b)^*ba^\omega$
Construction of $\mathcal{A}^\$

Consider a NBW \mathcal{A} with n states.

- Construct the (Büchi) transition monoid of \mathcal{A}
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

$$T_v(x, y) = \begin{cases}
0 & \text{if } x \overset{v}{\not\rightarrow} y \\
1 & \text{if } x \overset{v}{\rightarrow} y \\
\star & \text{if } x \overset{v}{\Rightarrow} y
\end{cases}$$

$$L(\mathcal{A}) = (a + b)^*ba^\omega$$
Construction of $A^\$$

Consider a NBW A with n states.

- Construct the (Büchi) transition monoïd of A
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

$x \in \omega(T_v)$ iff $v^\omega \in [x]_A$

iff $x \xrightarrow{v^k} y \xrightarrow{v^{k'}} y$

$L(A) = (a + b)^*ba^\omega$
Construction of A

Consider a NBW A with n states.

- Construct the (Büchi) transition monoïd of A
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

A without accepting conditions
Construction of A

Consider a NBW A with n states.

- Construct the (Büchi) transition monoid of A
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

$I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
$\omega(I) = \emptyset$

$L(A) = (a + b) \cdot (ba)^* \cdot (a + b)$
Construction of A^S

Consider a NBW A with n states.

- Construct the (Büchi) transition monoid of A
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

\[
I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad \omega(I) = \emptyset
\]

\[
T_a = \begin{pmatrix} 1 & 0 \\ 0 & \ast \end{pmatrix}, \quad \omega(T_a) = \{1\}
\]

\[
T_b = \begin{pmatrix} 1 & \ast \\ 0 & 0 \end{pmatrix}, \quad \omega(T_b) = \emptyset
\]
Construction of A^S

Consider a NBW A with n states.

- Construct the (Büchi) transition monoid of A
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

(x, T_v) is accepting iff $x \in \omega(T_v)$
Construction of $\mathcal{A}^\$

Consider a NBW \mathcal{A} with n states.

- Construct the (Büchi) transition monoid of \mathcal{A}
- Compute the loop structure
- Construct the prefix layer
- Add a $\$ transition from each state
- Copy n times the transition monoid
- Define the final states

$L(\mathcal{A}^\$) = (a + b)^* ba^* a^+$
Exploiting the structure of the construction

\[L^\$ = \{ u\$v \mid uv^\omega \in \mathcal{L} \} \]

- Second layer deterministic \(\Rightarrow \) no need for congruence on it.
- Second layer consists in \(n \) times the same structure, only final states change \(\Rightarrow \) want to share the computation.
- First layer can be seen as a weighted automaton \(\mathcal{A}^\mathcal{L} \) recognizing \(\mathcal{L}^\mathcal{L} : u \mapsto \{ v \mid uv^\omega \in \mathcal{L} \} \) \(\Rightarrow \) apply a variant of HKC on it.
Changes: Postpone the verifications and return list of non-skipped pairs.

Input: A NBW A and two sets of states X, Y.

Output: A pre-bisimulation up to congruence.

$[0]_A = [1]_A = \text{infinitely many } a\text{'s}$

Pairs: \[\langle \{0\}, \{1\} \rangle ; \langle \{1\}, \{1, 2\} \rangle \]

Skipped pairs: \[\langle \{0, 2\}, \{0\} \rangle ; \langle \{1, 2\}, \{1, 2\} \rangle ; \langle \{0\}, \{0, 2\} \rangle \]
Changes: Postpone the verifications and return list of non-skipped pairs.

Input: A NBW \mathcal{A} and two sets of states X, Y.

Output: A pre-bisimulation up to congruence.

In the congruence closure:
- $\langle \{0\}, \{1, 2\} \rangle$ by transitivity
- $\langle \{2\}, \{2\} \rangle$ by reflexivity
- $\langle \{0, 2\}, \{1, 2\} \rangle$ by union
- $\langle \{1, 2\}, \{1\} \rangle$ and $\langle \{1\}, \{0\} \rangle$ by symmetry
- $\langle \{0, 2\}, \{1\} \rangle$ by transitivity
- $\langle \{0, 2\}, \{0\} \rangle$ by transitivity

$[0]\mathcal{A} = [1]\mathcal{A} = \text{infinitely many } a \text{'s}$

Pairs: $\langle \{0\}, \{1\} \rangle$; $\langle \{1\}, \{1, 2\} \rangle$

Skipped pairs: $\langle \{0, 2\}, \{0\} \rangle$; $\langle \{1, 2\}, \{1, 2\} \rangle$; $\langle \{0\}, \{0, 2\} \rangle$
Comparing the outputs: discriminating sets

A priori need to compare language of words \(\Rightarrow \) infinitely many of them.

But All the information needed in the set of \(\omega(T_v) \) \(\Rightarrow \) finite.

Input: A NBW \(\mathcal{A} = \langle S, T \rangle \).

Output: The set of discriminating sets \(\mathcal{D} = \{ \omega(T_v) | v \in A^* \} \).

\[
\begin{align*}
0 & \xleftarrow{a} 1 \\
0 & \xleftarrow{b} 2 \\
2 & \xleftarrow{b} 1
\end{align*}
\]

- Go through the transition monoid
- Keep in memory the different \(\omega(T_v) \)'s encountered

Transition monoid has 13 elements

\[
\begin{align*}
\mathcal{D} = \emptyset ; \ {0, 1} ; \ {0, 1, 2} \\
\omega(T_b) &= \emptyset \quad \omega(T_a) = \{0, 1\} \quad \omega(T_{ba}) = \{0, 1, 2\}
\end{align*}
\]
Global Algorithm

Compute the Pairs \(\parallel \) Compute the discriminating sets \(\mathcal{D} \)

For all pair \(\langle X, Y \rangle \) and all discriminating set \(\mathcal{D} \), check that:

\[
X \cap \mathcal{D} = \emptyset \iff Y \cap \mathcal{D} = \emptyset
\]

Pairs = \(\langle \{0\}, \{1\} \rangle ; \langle \{1\}, \{1, 2\} \rangle \)

\(\mathcal{D} = \emptyset ; \{0, 1\} ; \{0, 1, 2\} \)
Conclusion

A coinductive-based algorithm to solve the language equality problem for Büchi automata.

Advantages:

▶ Two independent and parallel parts
▶ Advanced up-to techniques to study the prefix layer
▶ Sharing of information to study the periodic layer

Drawback:

▶ Need to explore the whole transition monoid to find discriminating sets
Future work

- Design up-to techniques to take advantage of the structure of the periodic layer

- Adapt known optimization for already existing algorithms on NBW