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Outline

Intro.

® Synchronizing automata, Cerny conjecture, the k-rendezvous time
* Primitive sets of matrices (aka primitive nondeterministic finite state
automata), the k-rendezvous time
Main result.
® Upper bound on the k-rendezvous time of NZ primitive
nondeterministic finite state automata
¢ Our bound cannot be improved
® Numerical experiments
Conclusion.

The k-rendezvous time of an NZ primitive nondeterministic finite
state automaton on n states is at most linear in n for any fixed and
small enough k.
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Synchronizing automata

Deterministic Finite Automaton (DFA):
A=(Q,X,6), 6: QxX—~>Q, d(q,a)=q.a.
Q={1,2,3}, x={a,b}.
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o

E]

3/20



Introduction Main result Conclusion
©0000000 00000000 oo

Synchronizing automata
Deterministic Finite Automaton (DFA):
A=(Q,X,6), 6:Q@xX > Q, d(g,a)=q.a.
@R={1,2,3}, X={a, b}.

w = abba

3/20



Introduction Main result Conclusion
©0000000 00000000 oo

Synchronizing automata

Deterministic Finite Automaton (DFA):
A=(Q,X,6), 6: QxX—~>Q, d(q,a)=q.a.
Q={1,2,3}, x={a,b}.

w = abba

3/20



Introduction Main result Conclusion
00000000 00000000 [o]e]

Synchronizing automata

Deterministic Finite Automaton (DFA):
A=(Q,%,8), 0: @xX ~> Q, §(g,a) =q.a.
@R={1,2,3}, X={a, b}.

Synchronizing word:

w =abba, VYqeQ, gqw=2

A DFA is synchronizing if there exists a word w and a state t € @ such
that for any state q, g.w = t.
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Synchronizing automata

Deterministic Finite Automaton (DFA):
=(Q,X,4), 6: QxX > Q, 0(g,a) =q.a.

@R={1,2,3}, X={a, b}.

Synchronizing word:

w =abba, VYqeQ, gqw=2

010 001 010
{a:(001) b= (100)} :(010).
010 010 010

A DFA is synchronizing if there exists a word w and a state t € @ such
that for any state q, g.w = t.

Equivalently:

A DFA is a finite set of row-stochastic {0, 1}-matrices and it is
synchronizing iff there exists a product of its matrices that has an
all-ones column.
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The Cerny conjecture

The Cerny conjecture (1964): any synchronizing DFA on n states has a
synchronizing word of length < (n—1)2.

® Confirmed by exhaustive search for small n [Trahtman '16, Bondt et. al. '17].
* Proved for some classes of automata [Kari '03, Carpi '08, ...].

® Best upper bound is cubic in n [Pin-Frankl '83, Szykuta '18].
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The k-rendezvous time

The k-rendezvous time (k-RT): length of the shortest word mapping a
set of k states onto one in a synchronizing automaton.

In matrix terms:
length of the shortest matrix product having a column with > k ones.

5/20



Introduction Main result Conclusion
00@00000 00000000 oo

The k-rendezvous time

The k-rendezvous time (k-RT): length of the shortest word mapping a
set of k states onto one in a synchronizing automaton.
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length of the shortest matrix product having a column with > k ones.
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The k-rendezvous time

The k-rendezvous time (k-RT): length of the shortest word mapping a
set of k states onto one in a synchronizing automaton.

In matrix terms:
length of the shortest matrix product having a column with > k ones.

Relaxation of the problem: upper bounds on the k-RT?
k =2 trivial. 1-RT=1
k = 3, quadratic upper bound in n [Gonze, Jungers '16]
k>47

* k =n = shortest synchronizing word = Cerny’s conjecture

Our approach:

We extend the notion of k-RT to primitive nondeterministic finite
state automata (NFAs).
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Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, X ={a, b}.

6/20



Introduction Main result Conclusion
000e0000 00000000 [o]e]

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, X ={a, b}.

w = abbabba

6/20



Introduction Main result Conclusion
000e0000 00000000 [o]e]

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, X ={a, b}.

w = abbabba

6/20



Introduction Main result Conclusion
000e0000 00000000 [o]e]

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):
) M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, ¥={a, b}.

w = abbabba

6/20



Introduction Main result Conclusion
000e0000 00000000 [o]e]

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, X ={a, b}.

w = abbabba

6/20



Introduction Main result Conclusion
000@0000 00000000 oo

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):
() M=(Q,%,4), 6 c @ x2rxQ.
@R={1,2,3,4}, ¥={a,b}.

w = abbabba

6/20



Introduction Main result Conclusion
000@0000 00000000 oo

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, x={a, b}.

w = abbabba

6/20



Introduction Main result Conclusion
000@0000 00000000 oo

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, x={a, b}.

w = abbabba

6/20



Introduction Main result Conclusion
000@0000 00000000 oo

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
Q={1,2,3,4}, x={a, b}.

w = abbabba

6/20



Introduction Main result Conclusion
00080000 00000000 oo

Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):
(—startM =(Q,%,d), 0 c Q=2 xQ.
Q@={1,2,3,4}, £={a, b}.

w = abbabba
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Primitive NFAs
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Primitive NFAs

Nondeterministic Finite state Automaton
(NFA):

M=(Q,%,4), 6 c @ x2rxQ.
@R={1,2,3,4}, ¥={a,b}.

Primitive word:

w = abbabba , Vqe Q, gq.w = Q.

0890\, (2388)) (3132
a=|gioo0 | b=l1001] w=l1111]"
0010 0010 2121

An NFA is primitive if there exists a word w such that Vge Q, g.w = Q.

Equivalently:

An NFA is a finite set of {0, 1}-matrices and it is primitive iff there exists
a product of its matrices that is entrywise positive.
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Applications of primitivity

Primitivity as a property of set of matrices finds application in:

1. Consensus for discrete-time multi-agent systems [Chevalier et. al. '15];
2. Stochastic switched system [Jungers, Protasov '12];

3.
4

. Synchronizing automata [Blondel et. al. '15, Gerencsér et. al. '16, C., Jungers

Time-inhomogeneous Markov chains [Seneta '81, Costa et. al. '05];

'18];

I(t + 1) = A,,(t)z(t)
z(0) = o,

7/20
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Relaxation of the problem

The k-RT for primitive NFAs: length of the shortest matrix product
having a row or a column with at least k positive entries.

In automata terms: length of the shortest word w for which there exists
geQ and S c Q, |S| = k, such that one of the following holds:

1. forall s€ S, qes.w; 2. qw?28S.
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Relaxation of the problem

The k-RT for primitive NFAs: length of the shortest matrix product
having a row or a column with at least k positive entries.

In automata terms: length of the shortest word w for which there exists
geQ and S c Q, |S| = k, such that one of the following holds:

1. forall s€ S, qes.w; 2. qw?28S.

In this talk: we present an upper bound on the k-RT of NZ primitive
NFAs that depends on k and the number of states n
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Motivations: linking results

An NFA is NZ if VaeX and Vqe@Q, g has both an in-going and an
out-going edge labeled by a.

Equiv.: if every matrix has a positive entry in every row and column.

28%0) (2080
M= 0100|1001
0010 0010
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Motivations: linking results

Notation: A a synchronizing DFA and M a primitive NFA.
« rt(A): length of the shortest word of A mapping k states onto one

« rtg(M): length of the shortest word w of M having a row or a
column with k positive entries

Proposition. Given an NZ primitive NFA on n states M, the two DFAs
Ap and A, 7 are synchronizing and:

rt(M) = min {rtx (Anm), rtx (Apr) }-

10/20
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Main result: upper bound on the k-RT

Theorem. Let M be an NZ primitive NFA on n states. Then for any
2 < k < n it holds that

rtk(M) < Bk(n)

where

n(k3 - 3k? + 8k - 12) e

g if 2 < k < |/7
n(n - n n2 —
Bk(n)= B[ﬁj(”)* ( +2)(; I.\/_J) _?:TZ\;_J% if [ﬁJ-i—lSkS[gJ
Bng(n)+w if [2)+1<k<n
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Main result: upper bound on the k-RT

Theorem. Let M be an NZ primitive NFA on n states. Then for any
2 < k < n it holds that

rtk(M) < Bk(n)

where

n(k3 -3k? + 8k - 12) L

s if 2 < k < |/7
n(n - n n2 —
Bk(n)= B[ﬁj(”)* ( +2)(; I.\/_J) _?:TZ\;_J% if [ﬁJ-i—lSkS[gJ
Bng(n)+w if [2)+1<k<n

rty (M) grows at most linearly in n for any fixed k < /n.
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weight of a nonnegative vector: number of its positive entries
supp(v)= indices of the positive entries of the nonnegative vector v

Proposition 1. Let M be an NZ primitive NFA on n states. Then for any
2< k <n-1it holds that rt, (M) < Bx(n) where

Bz(n) =1
Bi+1(n) = Bk(n) +n(1+n-a})/2 for2<k<n-1.

and
ay = mingcsi ag(A);

ag(A) = mincec, [{i : supp(Asi) € supp(Asc)};
Sy: set of the nx n NZ matrices having every row and column of
weight < k and one column of weight = k;

Ca: set of the indices of the columns of A having weight = k.
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Intermediate result (I): sketch of the proof
8)} B A
0

1 A

Square Graph (SG) for NFAs: M e M ! :
(i,j) ﬂ> (I",j,) iff M,'7,'/ >0 and Mj,j’>01 or M,"jl>0 and ij,‘l>0.

Conclusion
[o]e]
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Intermediate result (I): sketch of the proof
) 3

Square Graph (SG) for NFAs: M e M ! :
(i,j) ﬂ> (I",j,) iff M,'7,'/ >0 and Mj,j/>0, or M,"jl>0 and ij,‘l>0.

A
for any NZ matrix M,
MABA*I 2 M*Z + M*3

In general: a path (i,j) - (k, k) labeled by Aj ... A, means that
MA/,---A, has the i, j-th columns of M summed up in column k. =
we will use this to construct a matrix with a column of weight > k+1

starting from a matrix with a column of weight k.
13,20
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Intermediate result (I): sketch of the proof

M= products of matrices of M of length < d.

By induction on k.
ok =2: rtp(M) =1= By(n) trivial.
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By induction on k.
ok =2: rtp(M) =1= By(n) trivial.
e Suppose rt, (M) < By(n), we prove that rty,1(M) < Bry1(n).
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Intermediate result (I): sketch of the proof

M= products of matrices of M of length < d.

By induction on k.

ok =2: rtp(M) =1= By(n) trivial.

e Suppose rtx (M) < By(n), we prove that rtx,1(M) < Biy1(n).
+ Strong connectivity of M: Vi=1,...,n

there exists W' e M (M)+n=1 \yith the j-th column of weight k.

Goal: find B e M"(1=7=3)/2 st WB has a column of weight > k + 1, 3/.

. al'l
+ Each W' has at least a} columns c,-l, ..., ¢;* whose support

;{supp(Wji) = by summing them up we get a column of weight > k+1 !

+ We need to estimate the length of the shortest path in SG from a vertex
in {(/,¢/)} 1<i<n to a vertex of type (k, k) = it is at most n(1-n—aj})/2

1gj<ay
O
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Proposition 1. Let M be an NZ primitive NFA on n states. Then for any
2<k<n-1it holds that rt, (M) < Bx(n) where

Bg(n) =1
Bi+1(n) = B(n) +n(1+n-a})/2 for2<k<n-1.

and
ay = minacsx g (A);

ap(A) = mincec, |{i : supp(Asi) & supp(Asc)};
S/ = set of the n x n NZ matrices having every row and column of
weight at most k and at least one column of weight exactly k;

Ca= set of the indices of the columns of A having weight equal to k.
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Proposition 1. Let M be an NZ primitive NFA on n states. Then for any
2<k<n-1it holds that rt, (M) < Bx(n) where

Bg(n) =1
Bii1(n) = Bk(n)+n(1+n- )/2 for2<k<n-1.

and
ay = minacsx ag (A);
ap(A) = mincec, |{7 : supp(Asi) & supp(Asc)};
S/ = set of the n x n NZ matrices having every row and column of
weight at most k and at least one column of weight exactly k;

Ca= set of the indices of the columns of A having weight equal to k.

The proposition also holds if we replace aj by any function b(n, k)
such that

15+/:20
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Proposition 2. For any n, k integerss.t. n>3 and 2<k<n-1,
ay >max{n—k(k-1)-1,[(n-k)/k],1}.

Therefore it holds that rt, (M) < Bi(n) where By(n) satisfies the following
recursion:

1 if k=1
Bi(n) + n(1+k(k-1)/2) if2<k<|/n]

Bi(n)+ n(1+n(k-1)/2k) if |[\/n]+1<k<|n/2]
By (n) +n?/2 if [n/2]+1<k<n-1

Bi+1(n) =

By solving the above recurrence, we obtain the main result i.e. the
upper bound on the k-rendezvous time for NZ primitive NFAs.

16 /20
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Our bound on a7} is optimal

Proposition. For any n, k integers s.t. n>3 and 2 < k < n—-1, it holds that

ay =max{n-k(k-1)-1,[(n-k)/k],1}.

We cannot improve the bound By(n) on the k-RT by improving the
estimate on a], so new strategies are needed.

17/20
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Numerical experiments

+ Mc,: family of NZ primitive NFAs on n states with quadratic
shortest primitive word [C., Jungers '18].

+ Eppstein bound: greedy algorithm for approximating the k-RT of an
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NZ primitive NFA.
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----Upper bound By(25)
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4-RT
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k-rendezvous time can be extended to primitive NFAs;
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Conclusion

+ NZ primitive NFAs are connected to synchronizing DFAs: the
k-rendezvous time can be extended to primitive NFAs;

+ We can upper bound the k-RT of an NZ primitive NFA by a linear
function of the number of states n for any fixed k < \/n, result that is
still unproven for the k-RT of synchronizing DFAs;

« Our result is also an upper bound on min{rtx(An), rtx(Apnr) }i

+ Qur technique cannot be improved as it already takes into account the
worst cases, so new strategies are needed.
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... Thank you!

Questions?
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