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Outline
Intro.

● Synchronizing automata, Černý conjecture, the k-rendezvous time
● Primitive sets of matrices (aka primitive nondeterministic finite state

automata), the k-rendezvous time

Main result.
● Upper bound on the k-rendezvous time of NZ primitive

nondeterministic finite state automata
● Our bound cannot be improved
● Numerical experiments

Conclusion.

The k-rendezvous time of an NZ primitive nondeterministic finite
state automaton on n states is at most linear in n for any fixed and

small enough k .
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Synchronizing automata
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Deterministic Finite Automaton (DFA):
A = ⟨Q,Σ, δ⟩, δ ∶ Q ×Σ→ Q, δ(q, a) = q.a.

Q ={1,2,3}, Σ={a,b}.

Synchronizing word:
w = abba , ∀q ∈Q, q.w =2

{a = ( 0 1 0
0 0 1
0 1 0

) , b = ( 0 0 1
1 0 0
0 1 0

)} , w = ( 0 1 0
0 1 0
0 1 0

) .

A DFA is synchronizing if there exists a word w and a state t ∈ Q such
that for any state q, q.w = t.

Equivalently:

A DFA is a finite set of row-stochastic {0,1}-matrices and it is
synchronizing iff there exists a product of its matrices that has an
all-ones column.
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The Černý conjecture

The Černý conjecture (1964): any synchronizing DFA on n states has a
synchronizing word of length ≤ (n − 1)2.

● Confirmed by exhaustive search for small n [Trahtman ’16, Bondt et. al. ’17].

● Proved for some classes of automata [Kari ’03, Carpi ’08, ...].

● Best upper bound is cubic in n [Pin-Frankl ’83, Szyku la ’18].
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The k-rendezvous time

The k-rendezvous time (k-RT): length of the shortest word mapping a
set of k states onto one in a synchronizing automaton.

In matrix terms:
length of the shortest matrix product having a column with ≥ k ones.

Relaxation of the problem: upper bounds on the k-RT?
● k = 2 trivial. 1-RT=1

● k = 3, quadratic upper bound in n [Gonze, Jungers ’16]

● k ≥ 4 ?

● k = n ⇒ shortest synchronizing word ⇒ Černý’s conjecture

Our approach:

We extend the notion of k-RT to primitive nondeterministic finite
state automata (NFAs).
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Nondeterministic Finite state Automaton
(NFA):
M= ⟨Q,Σ, δ⟩, δ ⊂ Q ×Σ ×Q.

Q ={1,2,3,4}, Σ={a,b}.

Primitive word:
, ∀q ∈ Q, q.w = Q.

{a=(
0 0 0 1
1 0 1 0
0 1 0 0
0 0 1 0

) , b=(
0 1 0 0
1 0 0 0
1 0 0 1
0 0 1 0

)} w =(
1 1 2 1
2 1 3 2
1 1 1 1
2 1 2 1

) .

An NFA is primitive if there exists a word w such that ∀q ∈ Q, q.w = Q.

Equivalently:

An NFA is a finite set of {0,1}-matrices and it is primitive iff there exists
a product of its matrices that is entrywise positive.
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Applications of primitivity

Primitivity as a property of set of matrices finds application in:

1. Consensus for discrete-time multi-agent systems [Chevalier et. al. ’15];

2. Stochastic switched system [Jungers, Protasov ’12];

3. Time-inhomogeneous Markov chains [Seneta ’81, Costa et. al. ’05];

4. Synchronizing automata [Blondel et. al. ’15, Gerencsér et. al. ’16, C., Jungers

’18]; ar
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Reachability of Consensus and Synchronizing Automata

Pierre-Yves Chevalier, Julien M. Hendrickx, Raphaël M. Jungers

Abstract—We consider the problem of determining the
existence of a sequence of matrices driving a discrete-time
multi-agent consensus system to consensus. We transform this
problem into the problem of the existence of a product of the
(stochastic) transition matrices that has a positive column. This
allows us to make use of results from automata theory to sets
of stochastic matrices. Our main result is a polynomial-time
algorithm to decide the existence of a sequence of matrices
achieving consensus.

I. INTRODUCTION

Consensus systems represent groups of agents trying to
reach agreement on some value. They are commonly used
in many distributed computation systems, and have attracted
much research attention in recent years. Indeed, many de-
centralized systems are a combination of local computing
and global synchronization, and consensus systems are an
appropriate tool to perform the synchronization step. The
simplest consensus system consists of agents computing the
weighted average of values of other agents:

x(t + 1) = Atx(t),

with At stochastic matrices, i.e., their entries are nonnegative
and the entries on each row sum up to one.

Recent works have considered the problem of controlling
consensus systems. This research deals, for instance, with
finding conditions on A and B under which system

x(t + 1) = Ax(t) + Bu

can be steered into any desired configuration [6], [19].
We consider a different kind of controllability: the system

is not controlled by an exogenous input, but by choosing the
matrix of interaction At at each time. Consider, for instance,
a wireless network of agents trying to converge to consensus.
One solution to avoid interference is to partition the agents
into groups which emit at different times. Thus, the problem
arises of optimally scheduling the communication protocol.
The problem consists here in finding a scheduling such that
the agents converge to consensus.

Formally, we study the system

x(t + 1) = Aσ(t)x(t)

x(0) = x0,
(1)

and we want to solve the following decision problem.

All authors are members of ICTEAM, Université catholique de Lou-
vain, Belgium. Their work is supported by the Belgian Network DYSCO,
funded by the Belgian government and the Concerted Research Action
(ARC) of the French Community of Belgium. R. M. Jungers is an
F.R.S.-FNRS research associate. Contact: {pierre-yves.chevalier,
julien.hendrickx, raphael.jungers}@uclouvain.be. The
authors would also like to thank François Gonze for helpful discussions.

Problem 1. Given a set of stochastic matrices M =
{A1, . . . , Am}, does there exist a switching sequence σ :
N !→ {1, . . . , m} : t !→ σ(t) such that, for any x0,
System (1) converges to consensus, i.e., to some vector
a1 = a

(
1 . . . 1

)⊤ for some a?1

This problem can be seen as an open loop control problem.
Indeed, it deals with the existence of a sequence σ that
steers System (1) to consensus from any initial condition.
One could have σ depend on the initial condition x0 or,
more generally, on the state x(t) (closed loop control), but
we proved in [7, Proposition 1.b] that the two are equivalent.

Our problem can be seen as deciding stabilizability of a
switched system with control on the switching signal. This
problem has motivated much research effort (see, e.g. [12],
[20] and [13, Section 2.2.4]) and is known to be very hard.
For instance, deciding, for a matrix set M , whether there is
a product of matrices from M that converges to zero is an
undecidable problem [17].

We will show that for consensus systems, not only is the
problem decidable, but it is decidable in polynomial time.
Our proof technique proceeds in two steps. First, we reduce
the problem to that of determining the existence of a positive-
column product, i.e., a product of transition matrices that
has a positive column. We call a positive-column word the
sequence of indices of a positive-column product. It turns
out that the existence of positive-column words has been
extensively studied for sets of binary stochastic matrices (i.e.,
stochastic matrices with the additional constraint that the
entries are in {0, 1}). Sets of binary stochastic matrices that
have a positive-column word are called synchronizing semi-
automata. Secondly, we leverage results on synchronizing
automata and extend them to sets of stochastic matrices.

A. Synchronizing Automata
Synchronizing automata appeared in theoretical computer

science in the sixties and have attracted lots of research
attention. A semi-automaton is a triple (S, Σ, M) where
S is a finite set of states, Σ is a finite set of letters and
is called the alphabet, and M is a finite set of mappings
from S to S. An automaton is a semi-automaton with a set
of ACCEPT states. These ACCEPT states determine which
input words are accepted by the automaton. Semi-automata
can be represented as sets of digraphs where each node
has outdegree one. An example is given in Figure 1. They
can also be represented by a set of matrices, containing the

1This problem is Problem 2 of our article [7], that we restrict here to
the case of stochastic matrices. We obtain here much stronger results with
a different approach.
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Relaxation of the problem
The k-RT for primitive NFAs: length of the shortest matrix product
having a row or a column with at least k positive entries.

In automata terms: length of the shortest word w for which there exists
q ∈ Q and S ⊂ Q, ∣S ∣ = k , such that one of the following holds:

1. for all s ∈ S , q ∈ s.w; 2. q.w ⊇ S.
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Motivations: linking results
An NFA is NZ if ∀a∈Σ and ∀q ∈Q, q has both an in-going and an
out-going edge labeled by a.
Equiv.: if every matrix has a positive entry in every row and column.
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Introduction Main result Conclusion

Motivations: linking results

Notation: A a synchronizing DFA and M a primitive NFA.

∗ rtk(A): length of the shortest word of A mapping k states onto one

∗ rtk(M): length of the shortest word w of M having a row or a
column with k positive entries

Proposition. Given an NZ primitive NFA on n states M, the two DFAs
AM and A

MT are synchronizing and:

rtk(M) = min{rtk(AM), rtk(AMT )} .

10 / 20
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Main result: upper bound on the k-RT

Theorem. Let M be an NZ primitive NFA on n states. Then for any
2 ≤ k ≤ n it holds that

rtk(M) ≤ Bk(n)

where

Bk(n)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n(k3 − 3k2 + 8k − 12)
6

+ 1 if 2 ≤ k ≤ ⌊
√
n⌋

B
⌊

√

n⌋(n) +
n(n + 2)(k − ⌊

√
n⌋)

2
− n2

2

k−1

∑
i=⌊

√

n⌋

1

i
if ⌊

√
n⌋ + 1 ≤ k ≤ ⌊n2 ⌋

B⌊
n
2
⌋(n) +

(k − ⌊n2 ⌋)n
2

2
if ⌊n2 ⌋ + 1 ≤ k ≤ n

.

rtk(M) grows at most linearly in n for any fixed k ≤
√
n.
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Intermediate result (I)
∗ weight of a nonnegative vector: number of its positive entries
∗ supp(v)= indices of the positive entries of the nonnegative vector v

Proposition 1. Let M be an NZ primitive NFA on n states. Then for any
2 ≤ k ≤ n − 1 it holds that rtk(M) ≤ Bk(n) where

⎧⎪⎪⎨⎪⎪⎩

B2(n) = 1

Bk+1(n) = Bk(n) + n(1 + n − ank)/2 for 2 ≤ k ≤ n − 1.

and
● ank = minA∈Sk

n
ank(A);

● ank(A) = minc∈CA ∣{i ∶ supp(A∗i) ⊈ supp(A∗c)}∣;
● Snk : set of the n × n NZ matrices having every row and column of

weight ≤ k and one column of weight = k;

● CA: set of the indices of the columns of A having weight = k .

12 / 20
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Intermediate result (I): sketch of the proof

M= {A = (
0 1 0 0
1 0 0 1
0 0 1 0
1 0 0 0

)B = (
0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1

)}
1

23

4

ABA

B

A

B

A

B

A

Square Graph (SG) for NFAs: M ∈ M
(i , j) MÐ→ (i ′, j ′) iff Mi ,i ′ >0 and Mj ,j ′ >0, or Mi ,j ′ >0 and Mj ,i ′ >0.

1,1

2,23,3

4,4 2,4

3,4

1,4

2,3

1,2

1,3

AA

A

A

A

A
B

A

A

A

A

A

A

A

A
B

B

B

B

B

BB B B

for any NZ matrix M,
MABA∗1 ≥M∗2 +M∗3

In general: a path (i , j) → (k , k) labeled by Al1 . . .Als means that
MAl1⋯Als has the i , j-th columns of M summed up in column k .

⇒
we will use this to construct a matrix with a column of weight ≥ k + 1
starting from a matrix with a column of weight k.
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Intermediate result (I): sketch of the proof

Md= products of matrices of M of length ≤ d .

By induction on k.
●k = 2: rt2(M) = 1 = B2(n) trivial.

●Suppose rtk(M) ≤ Bk(n), we prove that rtk+1(M) ≤ Bk+1(n).

∗ Strong connectivity of M: ∀i = 1, . . . ,n

there exists W i ∈ Mrtk(M)+n−1 with the i-th column of weight k.

Goal: find B ∈ Mn(1−n−ank)/2 s.t. W iB has a column of weight ≥ k + 1, ∃i .

∗ Each W i has at least ank columns c1
i , . . . , c

ank
i whose support

⊈ supp(W i
∗i) ⇒ by summing them up we get a column of weight ≥ k + 1 !

∗ We need to estimate the length of the shortest path in SG from a vertex
in {(i , c ji )} 1≤i≤n

1≤j≤ank

to a vertex of type (k , k) ⇒ it is at most n(1 − n − ank)/2

◻
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We have proven that
Proposition 1. Let M be an NZ primitive NFA on n states. Then for any
2 ≤ k ≤ n − 1 it holds that rtk(M) ≤ Bk(n) where

⎧⎪⎪⎨⎪⎪⎩

B2(n) = 1

Bk+1(n) = Bk(n) + n(1 + n − ank)/2 for 2 ≤ k ≤ n − 1.

and
● ank = minA∈Sk

n
ank(A);

● ank(A) = minc∈CA ∣{i ∶ supp(A∗i) ⊈ supp(A∗c)}∣;
● Snk = set of the n × n NZ matrices having every row and column of

weight at most k and at least one column of weight exactly k;

● CA= set of the indices of the columns of A having weight equal to k .

The proposition also holds if we replace ank by any function b(n, k)
such that 1 ≤ b(n,k) ≤ an

k.
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Intermediate result (II)
Proposition 2. For any n, k integers s.t. n ≥ 3 and 2 ≤ k ≤ n − 1,

ank ≥ max{n − k(k − 1) − 1, ⌈(n − k)/k⌉,1}.

Therefore it holds that rtk(M) ≤ Bk(n) where Bk(n) satisfies the following
recursion:

Bk+1(n) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1 if k = 1

Bk(n) + n(1 + k(k − 1)/2) if 2 ≤ k ≤ ⌊
√
n⌋

Bk(n) + n(1 + n(k − 1)/2k) if ⌊
√
n⌋ + 1 ≤ k ≤ ⌊n/2⌋

Bk(n) + n2/2 if ⌊n/2⌋ + 1 ≤ k ≤ n − 1

.

By solving the above recurrence, we obtain the main result i.e. the
upper bound on the k-rendezvous time for NZ primitive NFAs.
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Our bound on ank is optimal

Proposition. For any n, k integers s.t. n ≥ 3 and 2 ≤ k ≤ n−1, it holds that

ank = max{n − k(k − 1) − 1, ⌈(n − k)/k⌉,1}.

We cannot improve the bound Bk(n) on the k-RT by improving the
estimate on ank , so new strategies are needed.
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Numerical experiments

∗ MCn : family of NZ primitive NFAs on n states with quadratic
shortest primitive word [C., Jungers ’18].

∗ Eppstein bound: greedy algorithm for approximating the k-RT of an
NZ primitive NFA.

n = 25 k = 4
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Conclusion

∗ NZ primitive NFAs are connected to synchronizing DFAs: the
k-rendezvous time can be extended to primitive NFAs;

∗ We can upper bound the k-RT of an NZ primitive NFA by a linear
function of the number of states n for any fixed k ≤

√
n, result that is

still unproven for the k-RT of synchronizing DFAs;

∗ Our result is also an upper bound on min{rtk(AM), rtk(AMT )};

∗ Our technique cannot be improved as it already takes into account the
worst cases, so new strategies are needed.
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...Thank you!

Questions?
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