A linear bound on the k-rendezvous time for primitive sets of NZ matrices

Umer Azfar¹, <u>Costanza Catalano</u>², Ludovic Charlier¹, Raphaël Jungers¹

¹ Université Catholique de Louvain, Louvain-la-Neuve, Belgium ² Politecnico di Torino, Turin, Italy

DLT, Warsaw, 6th August 2019

Conclusion 00

Outline

Intro.

- Synchronizing automata, Černý conjecture, the *k*-rendezvous time
- Primitive sets of matrices (aka primitive nondeterministic finite state automata), the *k*-rendezvous time

Outline

Intro.

- Synchronizing automata, Černý conjecture, the *k*-rendezvous time
- Primitive sets of matrices (aka primitive nondeterministic finite state automata), the *k*-rendezvous time

Main result.

- Upper bound on the *k*-rendezvous time of NZ primitive nondeterministic finite state automata
- Our bound cannot be improved
- Numerical experiments

Outline

Intro.

- Synchronizing automata, Černý conjecture, the *k*-rendezvous time
- Primitive sets of matrices (aka primitive nondeterministic finite state automata), the *k*-rendezvous time

Main result.

- Upper bound on the *k*-rendezvous time of NZ primitive nondeterministic finite state automata
- Our bound cannot be improved
- Numerical experiments

Conclusion.

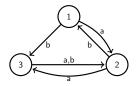
The k-rendezvous time of an NZ primitive nondeterministic finite state automaton on n states is at most linear in n for any fixed and small enough k.

Main result

Conclusion 00

Synchronizing automata

Deterministic Finite Automaton (DFA): $\mathcal{A} = \langle Q, \Sigma, \delta \rangle, \ \delta : Q \times \Sigma \rightarrow Q, \ \delta(q, a) = q.a.$ $Q = \{1, 2, 3\}, \ \Sigma = \{a, b\}.$

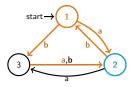


Main result

Conclusion 00

Synchronizing automata

Deterministic Finite Automaton (DFA): $\mathcal{A} = \langle Q, \Sigma, \delta \rangle, \ \delta : Q \times \Sigma \rightarrow Q, \ \delta(q, a) = q.a.$ $Q = \{1, 2, 3\}, \ \Sigma = \{a, b\}.$



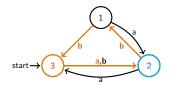
w = abba

Main result

Conclusion 00

Synchronizing automata

Deterministic Finite Automaton (DFA): $\mathcal{A} = \langle Q, \Sigma, \delta \rangle, \ \delta : Q \times \Sigma \rightarrow Q, \ \delta(q, a) = q.a.$ $Q = \{1, 2, 3\}, \ \Sigma = \{a, b\}.$



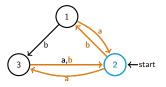
w = abba

Main result

Conclusion 00

Synchronizing automata

Deterministic Finite Automaton (DFA): $\mathcal{A} = \langle Q, \Sigma, \delta \rangle, \ \delta : Q \times \Sigma \rightarrow Q, \ \delta(q, a) = q.a.$ $Q = \{1, 2, 3\}, \ \Sigma = \{a, b\}.$

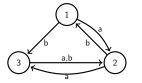


w = abba

Main result

Synchronizing automata

Deterministic Finite Automaton (DFA): $\mathcal{A} = \langle Q, \Sigma, \delta \rangle, \ \delta : Q \times \Sigma \to Q, \ \delta(q, a) = q.a.$ $Q = \{1, 2, 3\}, \Sigma = \{a, b\}.$



Synchronizing word:

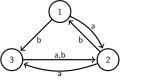
$$w = abba$$
, $\forall q \in Q, q.w = 2$

A DFA is synchronizing if there exists a word w and a state $t \in Q$ such that for any state q, q.w = t.

Introduction •••••••• Main result

Synchronizing automata

Deterministic Finite Automaton (DFA): c a.



$$\mathcal{A} = \{Q, \Sigma, \delta\}, \ \delta : Q \times \Sigma \to Q, \ \delta(q, a) = q.$$

$$Q = \{1, 2, 3\}, \ \Sigma = \{a, b\}.$$
Synchronizing word:
$$w = abba, \ \forall q \in Q, \ q.w = 2$$

$$\left\{a = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \ b = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}\right\}, \ w = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}.$$

A DFA is synchronizing if there exists a word w and a state $t \in Q$ such that for any state q, q.w = t.

Equivalently:

A DFA is a finite set of row-stochastic $\{0,1\}$ -matrices and it is synchronizing iff there exists a product of its matrices that has an all-ones column.

Main result

Conclusion 00

The Černý conjecture

The Černý conjecture (1964): any synchronizing DFA on *n* states has a synchronizing word of length $\leq (n-1)^2$.

- Confirmed by exhaustive search for small n [Trahtman '16, Bondt et. al. '17].
- Proved for some <u>classes</u> of automata [Kari '03, Carpi '08, ...].
- Best upper bound is <u>cubic</u> in *n* [Pin-Frankl '83, Szykuła '18].

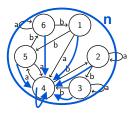
Main result

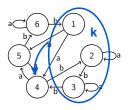
Conclusion 00

The Černý conjecture

The Černý conjecture (1964): any synchronizing DFA on *n* states has a synchronizing word of length $\leq (n-1)^2$.

- Confirmed by exhaustive search for small n [Trahtman '16, Bondt et. al. '17].
- Proved for some <u>classes</u> of automata [Kari '03, Carpi '08, ...].
- Best upper bound is <u>cubic</u> in *n* [Pin-Frankl '83, Szykuła '18].





Main result

Conclusion 00

The k-rendezvous time

The k-rendezvous time (k-RT): length of the shortest word mapping a set of k states onto one in a synchronizing automaton.

In matrix terms:

length of the shortest matrix product having a column with $\geq k$ ones.

Main result

Conclusion 00

The k-rendezvous time

The k-rendezvous time (k-RT): length of the shortest word mapping a <u>set of *k* states onto one</u> in a synchronizing automaton.

In matrix terms:

length of the shortest matrix product having a column with $\geq k$ ones.

Relaxation of the problem: upper bounds on the k-RT?

- k = 2 trivial. 1-RT=1
- k = 3, quadratic upper bound in *n* [Gonze, Jungers '16]
- *k* ≥ 4 ?
- $k = n \Rightarrow$ shortest synchronizing word \Rightarrow Černý's conjecture

Main result

Conclusion 00

The k-rendezvous time

The k-rendezvous time (k-RT): length of the shortest word mapping a <u>set of *k* states onto one</u> in a synchronizing automaton.

In matrix terms:

length of the shortest matrix product having a column with $\geq k$ ones.

Relaxation of the problem: upper bounds on the k-RT?

- k = 2 trivial. 1-RT=1
- k = 3, quadratic upper bound in *n* [Gonze, Jungers '16]
- k ≥ 4 ?
- $k = n \Rightarrow$ shortest synchronizing word \Rightarrow Černý's conjecture

Our approach:

We extend the notion of k-RT to primitive nondeterministic finite state automata (NFAs).

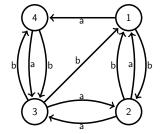
Main result

Conclusion 00

Primitive NFAs

Nondeterministic Finite state Automaton (NFA): $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$

$$\mathcal{M} = \{Q, \Sigma, \delta\}, \ \delta \subset Q \times \Sigma \times Q = \{1, 2, 3, 4\}, \ \Sigma = \{a, b\}.$$

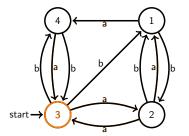


Main result

Conclusion 00

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):



(NFA):

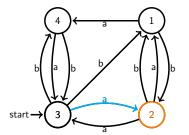
$$\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$$

 $Q = \{1, 2, 3, 4\}, \ \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):

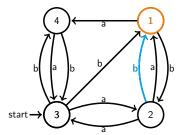


 $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):

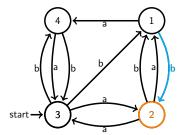


 $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):

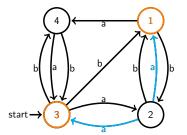


 $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):

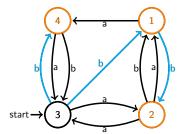


 $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):

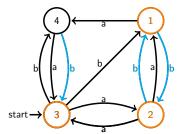


 $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):

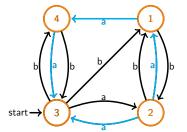


 $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):



 $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

b

Main result

Conclusion 00

Primitive NFAs

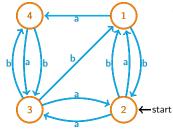
Nondeterministic Finite state Automaton (NFA): $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \ \Sigma = \{a, b\}.$ w = abbabba

Main result

Conclusion 00

Primitive NFAs

Nondeterministic Finite state Automaton (NFA): $M = \sqrt{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{j=1}^{N} \sum_{i=1}^{N} \sum_{i=1}^$

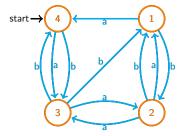


(NFA): $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \ \Sigma = \{a, b\}.$

Main result

Primitive NFAs

Nondeterministic Finite state Automaton (NFA): $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$



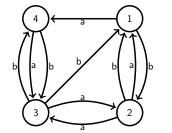
 $Q = \{1, 2, 3, 4\}, \Sigma = \{a, b\}.$

Main result

Conclusion 00

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):



(NFA): $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \ \Sigma = \{a, b\}.$

Primitive word:

$$w = abbabba$$
, $\forall q \in Q, q.w = Q$.

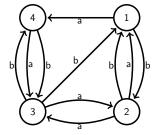
An NFA is **primitive** if there exists a word *w* such that $\forall q \in Q, q.w = Q$.

Main result

Conclusion 00

Primitive NFAs

Nondeterministic Finite state Automaton (NFA):



(NFA): $\mathcal{M} = \langle Q, \Sigma, \delta \rangle, \ \delta \subset Q \times \Sigma \times Q.$ $Q = \{1, 2, 3, 4\}, \ \Sigma = \{a, b\}.$

Primitive word:

w = abbabba, $\forall q \in Q, q.w = Q$.

$$\left\{a\!=\!\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \ b\!=\!\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}\right\} \ w\!=\!\begin{pmatrix} 1 & 1 & 2 & 1 \\ 2 & 1 & 3 & 2 \\ 1 & 1 & 1 & 1 \\ 2 & 1 & 2 & 1 \end{pmatrix}.$$

An NFA is **primitive** if there exists a word w such that $\forall q \in Q, q.w = Q$.

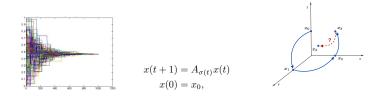
Equivalently:

An NFA is a finite set of $\{0,1\}$ -matrices and it is **primitive** iff there exists a product of its matrices that is **entrywise positive**.

Applications of primitivity

Primitivity as a property of set of matrices finds application in:

- 1. Consensus for discrete-time multi-agent systems [Chevalier et. al. '15];
- 2. Stochastic switched system [Jungers, Protasov '12];
- 3. Time-inhomogeneous Markov chains [Seneta '81, Costa et. al. '05];
- Synchronizing automata [Blondel et. al. '15, Gerencsér et. al. '16, C., Jungers '18];



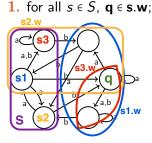
Main result

Conclusion 00

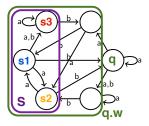
Relaxation of the problem

The k-RT for primitive NFAs: length of the shortest matrix product having a row or a column with at least k positive entries.

In automata terms: length of the shortest word *w* for which there exists $q \in Q$ and $S \subset Q$, |S| = k, such that one of the following holds:



2. q.**w** ⊇ **S**.



Main result

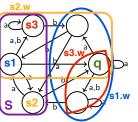
Conclusion 00

Relaxation of the problem

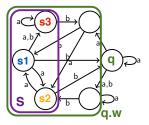
The k-RT for primitive NFAs: length of the shortest matrix product having a row or a column with at least k positive entries.

In automata terms: length of the shortest word *w* for which there exists $q \in Q$ and $S \subset Q$, |S| = k, such that one of the following holds:

1. for all $s \in S$, $\mathbf{q} \in \mathbf{s.w}$;



2. q.**w** ⊇ **S**.



In this talk: we present an <u>upper bound on the k-RT of NZ primitive</u> NFAs that depends on k and the number of states n

Motivations: linking results

$$\mathcal{M} = \left\{ \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right\}$$

Motivations: linking results

$$\mathcal{M} = \left\{ \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix} \right\}$$
$$\mathcal{M}_{\mathcal{M}} = \left\{ \overbrace{\begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ \end{pmatrix}, \right\}$$

Conclusion 00

Motivations: linking results

$$\mathcal{M} = \left\{ \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \right\}$$

Conclusion 00

Motivations: linking results

Conclusion 00

Motivations: linking results

Notation: \mathcal{A} a synchronizing DFA and \mathcal{M} a primitive NFA.

- * $\mathbf{rt}_{\mathbf{k}}(\mathcal{A})$: length of the shortest word of \mathcal{A} mapping k states onto one
- **rt**_k(*M*): length of the shortest word *w* of *M* having a row or a column with *k* positive entries

Proposition. Given an *NZ* primitive NFA on *n* states \mathcal{M} , the two DFAs $\mathcal{A}_{\mathcal{M}}$ and $\mathcal{A}_{\mathcal{M}^{T}}$ are synchronizing and:

$$rt_k(\mathcal{M}) = \min \{ rt_k(\mathcal{A}_{\mathcal{M}}), rt_k(\mathcal{A}_{\mathcal{M}^T}) \}.$$

Main result: upper bound on the k-RT

Theorem. Let \mathcal{M} be an NZ primitive NFA on n states. Then for any $2 \le k \le n$ it holds that

 $rt_k(\mathcal{M}) \leq B_k(n)$

where

$$B_{k}(n) = \begin{cases} \frac{n(k^{3} - 3k^{2} + 8k - 12)}{6} + 1 & \text{if } 2 \le k \le \lfloor \sqrt{n} \rfloor \\ B_{\lfloor \sqrt{n} \rfloor}(n) + \frac{n(n+2)(k - \lfloor \sqrt{n} \rfloor)}{2} - \frac{n^{2}}{2} \sum_{i=\lfloor \sqrt{n} \rfloor}^{k-1} \frac{1}{i} & \text{if } \lfloor \sqrt{n} \rfloor + 1 \le k \le \lfloor \frac{n}{2} \rfloor \\ B_{\lfloor \frac{n}{2} \rfloor}(n) + \frac{(k - \lfloor \frac{n}{2} \rfloor)n^{2}}{2} & \text{if } \lfloor \frac{n}{2} \rfloor + 1 \le k \le n \end{cases}$$

Main result: upper bound on the k-RT

Theorem. Let \mathcal{M} be an NZ primitive NFA on n states. Then for any $2 \le k \le n$ it holds that

 $rt_k(\mathcal{M}) \leq B_k(n)$

where

$$B_{k}(n) = \begin{cases} \frac{n(k^{3} - 3k^{2} + 8k - 12)}{6} + 1 & \text{if } 2 \le k \le \lfloor \sqrt{n} \rfloor \\ B_{\lfloor \sqrt{n} \rfloor}(n) + \frac{n(n+2)(k - \lfloor \sqrt{n} \rfloor)}{2} - \frac{n^{2}}{2} \sum_{i=\lfloor \sqrt{n} \rfloor}^{k-1} \frac{1}{i} & \text{if } \lfloor \sqrt{n} \rfloor + 1 \le k \le \lfloor \frac{n}{2} \rfloor \\ B_{\lfloor \frac{n}{2} \rfloor}(n) + \frac{(k - \lfloor \frac{n}{2} \rfloor)n^{2}}{2} & \text{if } \lfloor \frac{n}{2} \rfloor + 1 \le k \le n \end{cases}$$

 $rt_k(\mathcal{M})$ grows at most linearly in *n* for any fixed $k \leq \sqrt{n}$.

Conclusion 00

Intermediate result (I)

weight of a nonnegative vector: number of its positive entries
 supp(v) = indices of the positive entries of the nonnegative vector v

Proposition 1. Let \mathcal{M} be an NZ primitive NFA on n states. Then for any $2 \le k \le n-1$ it holds that $rt_k(\mathcal{M}) \le B_k(n)$ where

$$\begin{cases} B_2(n) = 1 \\ B_{k+1}(n) = B_k(n) + n(1 + n - a_k^n)/2 & \text{for } 2 \le k \le n - 1. \end{cases}$$

and

•
$$a_k^n = \min_{A \in S_n^k} a_k^n(A);$$

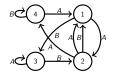
- $a_k^n(A) = \min_{c \in C_A} |\{i : supp(A_{*i}) \notin supp(A_{*c})\}|;$
- Sⁿ_k: set of the n×n NZ matrices having every row and column of weight ≤ k and one column of weight = k;
- C_A : set of the indices of the columns of A having weight = k.

Main result

Conclusion 00

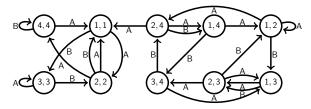
Intermediate result (I): sketch of the proof

$$\mathcal{M} = \left\{ A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$



Square Graph (SG) for NFAs: $M \in \mathcal{M}$

 $(i,j) \xrightarrow{M} (i',j')$ iff $M_{i,i'} > 0$ and $M_{j,j'} > 0$, or $M_{i,j'} > 0$ and $M_{j,i'} > 0$.

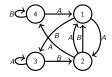


Main result

Conclusion 00

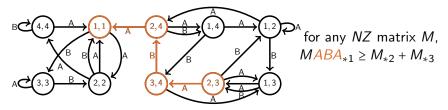
Intermediate result (I): sketch of the proof

$$\mathcal{M} = \left\{ A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$



Square Graph (SG) for NFAs: $M \in \mathcal{M}$

 $(i,j) \xrightarrow{M} (i',j')$ iff $M_{i,i'} > 0$ and $M_{j,j'} > 0$, or $M_{i,j'} > 0$ and $M_{j,i'} > 0$.

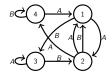


Main result

Conclusion 00

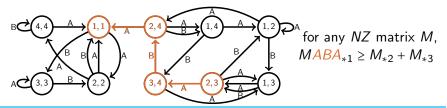
Intermediate result (I): sketch of the proof

$$\mathcal{M} = \left\{ A = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \right\}$$



Square Graph (SG) for NFAs: $M \in \mathcal{M}$

 $(i,j) \xrightarrow{M} (i',j')$ iff $M_{i,i'} > 0$ and $M_{j,j'} > 0$, or $M_{i,j'} > 0$ and $M_{j,i'} > 0$.



In general: a path $(i,j) \rightarrow (k,k)$ labeled by $A_{l_1} \dots A_{l_s}$ means that $MA_{l_1} \dots A_{l_s}$ has the *i*, *j*-th columns of *M* summed up in column k. \Rightarrow we will use this to construct a matrix with a column of weight $\ge k + 1$ starting from a matrix with a column of weight k.

 \mathcal{M}^d = products of matrices of \mathcal{M} of length $\leq d$.

By induction on k.

• $\mathbf{k} = \mathbf{2}$: $rt_2(\mathcal{M}) = 1 = B_2(n)$ trivial.

 \mathcal{M}^d = products of matrices of \mathcal{M} of length $\leq d$.

By induction on k.

- $\mathbf{k} = \mathbf{2}$: $rt_2(\mathcal{M}) = 1 = B_2(n)$ trivial.
- Suppose $rt_k(\mathcal{M}) \leq B_k(n)$, we prove that $rt_{k+1}(\mathcal{M}) \leq B_{k+1}(n)$.

 $\mathcal{M}^d =$ products of matrices of \mathcal{M} of length $\leq d$.

By induction on k.

- $\mathbf{k} = \mathbf{2}$: $rt_2(\mathcal{M}) = 1 = B_2(n)$ trivial.
- Suppose $rt_k(\mathcal{M}) \leq B_k(n)$, we prove that $rt_{k+1}(\mathcal{M}) \leq B_{k+1}(n)$.
- * Strong connectivity of \mathcal{M} : $\forall i = 1, ..., n$

there exists $W^i \in \mathcal{M}^{rt_k(\mathcal{M})+n-1}$ with the *i*-th column of weight *k*.

 \mathcal{M}^d = products of matrices of \mathcal{M} of length $\leq d$.

By induction on k.

- $\mathbf{k} = \mathbf{2}$: $rt_2(\mathcal{M}) = 1 = B_2(n)$ trivial.
- Suppose $\mathsf{rt}_{\mathsf{k}}(\mathcal{M}) \leq \mathsf{B}_{\mathsf{k}}(\mathsf{n})$, we prove that $\mathsf{rt}_{k+1}(\mathcal{M}) \leq \mathsf{B}_{k+1}(\mathsf{n})$.
- * Strong connectivity of \mathcal{M} : $\forall i = 1, ..., n$ there exists $W^i \in \mathcal{M}^{rt_k(\mathcal{M})+n-1}$ with the *i*-th column of weight *k*.

Goal: find $B \in \mathcal{M}^{n(1-n-a_k^n)/2}$ s.t. $W^i B$ has a column of weight $\geq k+1$, $\exists i$.

 $\mathcal{M}^d =$ products of matrices of \mathcal{M} of length $\leq d$.

By induction on k.

- $\mathbf{k} = \mathbf{2}$: $rt_2(\mathcal{M}) = 1 = B_2(n)$ trivial.
- Suppose $\mathsf{rt}_{\mathsf{k}}(\mathcal{M}) \leq \mathsf{B}_{\mathsf{k}}(\mathsf{n})$, we prove that $\mathsf{rt}_{k+1}(\mathcal{M}) \leq \mathsf{B}_{k+1}(\mathsf{n})$.
- * <u>Strong connectivity</u> of \mathcal{M} : $\forall i = 1, ..., n$ there exists $W^i \in \mathcal{M}^{rt_k(\mathcal{M})+n-1}$ with the *i*-th column of weight *k*. **Goal:** find $B \in \mathcal{M}^{n(1-n-a_k^n)/2}$ s.t. $W^i B$ has a column of weight $\geq k + 1$, $\exists i$. * Each W^i has at least a_k^n columns $c_i^1, ..., c_i^{a_k^n}$ whose support $\notin supp(W_{*i}^i) \Rightarrow$ by summing them up we get a column of weight $\geq k + 1$!

 $\mathcal{M}^d =$ products of matrices of \mathcal{M} of length $\leq d$.

By induction on k.

- $\mathbf{k} = \mathbf{2}$: $rt_2(\mathcal{M}) = 1 = B_2(n)$ trivial.
- Suppose $\mathsf{rt}_{\mathsf{k}}(\mathcal{M}) \leq \mathsf{B}_{\mathsf{k}}(\mathsf{n})$, we prove that $\mathsf{rt}_{k+1}(\mathcal{M}) \leq \mathsf{B}_{k+1}(\mathsf{n})$.
- * Strong connectivity of \mathcal{M} : $\forall i = 1, ..., n$ there exists $W^i \in \mathcal{M}^{rt_k(\mathcal{M})+n-1}$ with the *i*-th column of weight k. **Goal:** find $B \in \mathcal{M}^{n(1-n-a_k^n)/2}$ s.t. W^iB has a column of weight $\geq k+1$, $\exists i$. * Each W^i has at least a_k^n columns $c_i^1, ..., c_i^{a_k^n}$ whose support $\notin supp(W_{*i}^i) \Rightarrow$ by summing them up we get a column of weight $\geq k+1$! * We need to estimate the length of the shortest path in SG from a vertex in $\{(i, c_i^j)\}_{\substack{1 \leq i \leq n \\ 1 \leq j \leq a_k^n}}$ to a vertex of type $(k, k) \Rightarrow$ it is at most $n(1 - n - a_k^n)/2$

We have proven that

Proposition 1. Let \mathcal{M} be an NZ primitive NFA on n states. Then for any $2 \le k \le n-1$ it holds that $rt_k(\mathcal{M}) \le B_k(n)$ where

$$\begin{cases} B_2(n) = 1 \\ B_{k+1}(n) = B_k(n) + n(1 + n - a_k^n)/2 & \text{for } 2 \le k \le n - 1. \end{cases}$$

and

•
$$a_k^n = \min_{A \in S_n^k} a_k^n(A);$$

- $a_k^n(A) = \min_{c \in C_A} |\{i : supp(A_{*i}) \notin supp(A_{*c})\}|;$
- S_kⁿ = set of the n × n NZ matrices having every row and column of weight at most k and at least one column of weight exactly k;
- C_A = set of the indices of the columns of A having weight equal to k.

We have proven that

Proposition 1. Let \mathcal{M} be an NZ primitive NFA on n states. Then for any $2 \le k \le n-1$ it holds that $rt_k(\mathcal{M}) \le B_k(n)$ where

$$\begin{cases} B_2(n) = 1 \\ B_{k+1}(n) = B_k(n) + n(1 + n - b(n, k))/2 & \text{for } 2 \le k \le n - 1. \end{cases}$$

and

•
$$a_k^n = \min_{A \in S_n^k} a_k^n(A);$$

- $a_k^n(A) = \min_{c \in C_A} |\{i : supp(A_{*i}) \notin supp(A_{*c})\}|;$
- Sⁿ_k = set of the n × n NZ matrices having every row and column of weight at most k and at least one column of weight exactly k;
- C_A = set of the indices of the columns of A having weight equal to k.

The proposition also holds if we replace a_k^n by any function b(n,k) such that $1 \le b(n,k) \le a_k^n$.

Conclusion 00

Intermediate result (II)

Proposition 2. For any *n*, *k* integers s.t. $n \ge 3$ and $2 \le k \le n-1$,

$$a_k^n \ge \max\{n - k(k-1) - 1, \lceil (n-k)/k \rceil, 1\}.$$

Therefore it holds that $rt_k(\mathcal{M}) \leq B_k(n)$ where $B_k(n)$ satisfies the following recursion:

$$B_{k+1}(n) = \begin{cases} 1 & \text{if } k = 1 \\ B_k(n) + n(1 + k(k-1)/2) & \text{if } 2 \le k \le \lfloor \sqrt{n} \rfloor \\ B_k(n) + n(1 + n(k-1)/2k) & \text{if } \lfloor \sqrt{n} \rfloor + 1 \le k \le \lfloor n/2 \rfloor \\ B_k(n) + n^2/2 & \text{if } \lfloor n/2 \rfloor + 1 \le k \le n-1 \end{cases}$$

By solving the above recurrence, we obtain the main result i.e. the upper bound on the k-rendezvous time for NZ primitive NFAs.

•

Main result

Conclusion 00

Our bound on a_k^n is optimal

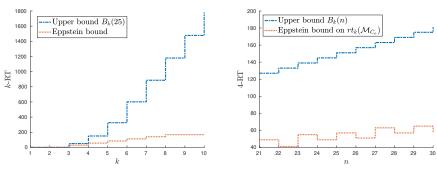
Proposition. For any *n*, *k* integers s.t. $n \ge 3$ and $2 \le k \le n-1$, it holds that

$$a_k^n = \max\{n - k(k-1) - 1, \lceil (n-k)/k \rceil, 1\}.$$

We **cannot** improve the bound $B_k(n)$ on the k-RT by improving the estimate on a_k^n , so new strategies are needed.

Numerical experiments

- * \mathcal{M}_{C_n} : family of *NZ* primitive NFAs on *n* states with quadratic shortest primitive word [C., Jungers '18].
- * **Eppstein bound**: greedy algorithm for approximating the k-RT of an *NZ* primitive NFA.



n = 25

Main result

Conclusion ●○

Conclusion

NZ primitive NFAs are connected to synchronizing DFAs: the k-rendezvous time can be extended to primitive NFAs;

Main result

Conclusion ●○

Conclusion

- NZ primitive NFAs are connected to synchronizing DFAs: the k-rendezvous time can be extended to primitive NFAs;
- We can upper bound the k-RT of an NZ primitive NFA by a linear function of the number of states n for any fixed k ≤ √n, result that is still unproven for the k-RT of synchronizing DFAs;

Conclusion

- NZ primitive NFAs are connected to synchronizing DFAs: the k-rendezvous time can be extended to primitive NFAs;
- We can upper bound the k-RT of an NZ primitive NFA by a linear function of the number of states n for any fixed k ≤ √n, result that is still unproven for the k-RT of synchronizing DFAs;
- * Our result is also an upper bound on min{ $rt_k(\mathcal{A}_{\mathcal{M}}), rt_k(\mathcal{A}_{\mathcal{M}^T})$ };

Conclusion

- NZ primitive NFAs are connected to synchronizing DFAs: the k-rendezvous time can be extended to primitive NFAs;
- We can upper bound the k-RT of an NZ primitive NFA by a linear function of the number of states n for any fixed k ≤ √n, result that is still unproven for the k-RT of synchronizing DFAs;
- * Our result is also an upper bound on min $\{rt_k(\mathcal{A}_{\mathcal{M}}), rt_k(\mathcal{A}_{\mathcal{M}^T})\};$
- * Our technique cannot be improved as it already takes into account the **worst cases**, so new strategies are needed.

Main result

Conclusion O

...Thank you!

Questions?