Relative edit-distance problem between input-driven pushdown languages

Hyunjoon Cheon1 Yo-Sub Han1 Sang-Ki Ko2 Kai Salomaa3

1Department of Computer Science, Yonsei University, Republic of Korea
2AI Research Center, Korea Electronics Technology Institute, Republic of Korea
3School of Computing, Queen’s University, Canada

DLT 2019
August 6th, 2019
Warsaw, Poland
Overview

Backgrounds

Inclusion problems

Relative edit-distance problems
Overview

Backgrounds

Inclusion problems

Relative edit-distance problems
XML Error detection

When we use an XML document...

- Open new context while reading a opening tag
- Read texts
- Close the current context while reading a closing tag

```xml
<pres>
  <title>Relative edit-distance problem... </title>
  <authors>
    <author>Hyunjoon Cheon</author>
    ...
  </authors>
  ...
</pres>
```
Backgrounds

XML Error detection

When we use an XML document...

► Open new context while reading a opening tag
► Read texts
► Close the current context while reading a closing tag

How different is a set of documents from XML schema?
→ Relative edit-distance problem of Input-driven languages
An Input-driven pushdown automaton (IDPDA) is a restricted form of a PDA that

1. **pushes** a symbol into the stack while reading a call symbol,

2. **pops** a symbol from the stack if it exists while reading a return symbol,

3. **reads** a local symbol without modifying the stack.
Input-driven pushdown automata

Definition
An IDPDA $A = (Q, \Sigma, \Gamma, \delta, s, F)$ has its alphabet and transitions, each of which belongs to one of call, return and local sets.
Input-driven pushdown automata

Definition
We define each transition set to be:

- a set \(\delta_c \) of call transitions over \((Q \times \Sigma_c) \times (Q \times \Gamma)\),
- a set \(\delta_r \) of return transitions over \((Q \times \Sigma_r \times \Gamma_\bot) \times Q\),
- a set \(\delta_l \) of local transitions over \((Q \times \Sigma_l) \times Q\),

where \(\bot \) represents an empty stack and \(\Gamma_\bot = \Gamma \cup \{\bot\} \).
Known properties for IDPDAs

<table>
<thead>
<tr>
<th></th>
<th>Emptiness</th>
<th>Universality</th>
<th>Complement</th>
</tr>
</thead>
<tbody>
<tr>
<td>NFA</td>
<td>NL<sup>1</sup></td>
<td>PSPACE<sup>2</sup></td>
<td>EXPTIME<sup>3</sup></td>
</tr>
<tr>
<td>IDPDA<sup>4</sup></td>
<td>P</td>
<td>EXPTIME</td>
<td>EXPTIME</td>
</tr>
<tr>
<td>PDA<sup>5</sup></td>
<td>P</td>
<td>Undec.</td>
<td>Undec.</td>
</tr>
</tbody>
</table>

¹ Jones, Space-bounded reducibility among combinatorial problems, Journal of Computer and System Sciences, 1975

² Meyer and Stockmeyer, The equivalence problem for regular expression with squaring requires exponential space, 13th symp. on Switching and Automata Theory, 1972

³ Sakoda and Sipser, Nondeterminism and the size of two way finite automata, 10th ACM symp. on Theory of computing, 1978.

⁴ Alur and Madhusudan, Visibly pushdown languages, 16th ACM symp. on Theory of computing., 2004.

Edit-distance

Definition
The *edit-distance* $d(x, y)$ between two strings x and y is the minimum number of edit operations to change x into y (or vice versa).

Example
$$d(a, b) = 1, \quad d(abcabc, bcabca) = 2.$$
Edit-distance over languages

Definition
We define the edit-distance between two languages L_1 and L_2 to be:

$$d(L_1, L_2) = \min_{x \in L_1, y \in L_2} d(x, y).$$

Example

\[
\begin{array}{c|ccc}
L_1 & <a> & <ab> & <a><a> \\
\hline
ab & 2 & 2 & 4 \\
 & 1 & 1 & 3 \\
\end{array}
\]

$$d(L_1, L_2) = d(L_2, L_1) = 1$$
Relative edit-distance

Definition
The maximum value of the edit-distance from every string in L_1 (called “source”) to L_2 (called “target”).

$$d_{\text{rel}}(L_1, L_2) = \sup_{w_1 \in L_1} \inf_{w_2 \in L_2} d(w_1, w_2)$$

Example

<table>
<thead>
<tr>
<th></th>
<th>$<a>$</th>
<th>$<ab>$</th>
<th>$<a><>><>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>$$</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

$$d_{\text{rel}}(L_1, L_2) = 2, \quad d_{\text{rel}}(L_2, L_1) = 3$$
Relative edit-distance

A visual representation of the edit-distance and the relative variant
Proposed problem

Problem (Inclusion problem)

Given two languages L_1 and L_2, *determine whether or not* $L_1 \subseteq L_2$.

Problem (Relative edit-distance problem)

Given two languages L_1 and L_2 and a fixed integer r, *determine whether or not* $d_{rel}(L_1, L_2) \leq r$.
Neighborhood languages

Definition
Given a language L, distance metric d and radius r, the *radius r neighborhood language* of L on d is,

$$L_r = \{ w \in \Sigma^* \mid (\exists x \in L) d(w, x) \leq r \}.$$
Overview

Backgrounds

Inclusion problems

Relative edit-distance problems
Inclusion problem

Definition
Given two languages \(L_1 \) and \(L_2 \), the inclusion problem from \(L_1 \) to \(L_2 \) is deciding whether or not \(L_1 \subseteq L_2 \).
Inclusion problems

Inclusion from NFA to $NIDPDA$

Theorem

Given an NFA A and an NIDPDA B, deciding whether or not $L(A) \subseteq L(B)$ is $EXPTIME$-complete.
Inclusion problems

Inclusion from \textit{NFA} to \textit{NIDPDA}

Proof of EXPTIME upperbound.

\begin{itemize}
 \item $L(A) \subseteq L(B) \iff L(A) \cap L(B)^c = \emptyset$.
 \item Complementation of an NIDPDA is done in EXPTIME due to determinization. [Alur2004]
 \item Intersection emptiness can be done in polynomial time.
\end{itemize}

Proof of EXPTIME lowerbound.

Universality problem for NIDPDAs ($\Sigma^* \subseteq L(B)$) is EXPTIME-complete.
Inclusion problems

Inclusion from (D)IDPDA to DIDPDA

Theorem

Given an NIDPDA A and a DIDPDA B, deciding whether or not $L(A) \subseteq L(B)$ can be solved in polynomial time.

Proof.

- It is well-known that complementing B is easy; exchange the set of final states and the set of non-final states.
- Intersection emptiness between $L(A)$ and $L(B)^c$ can be done in polynomial time.
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\)

Theorem

Given an \(NIDPDA\) (or a \(DIDPDA\)) \(A\) and an \(NFA\) \(B\), deciding whether or not \(L(A) \subseteq L(B)\) is \(EXPTIME\)-complete.

Proof strategy

- \(EXPTIME\) upper bound: Find a complement of \(B\)
- \(EXPTIME\) lower bound: Show a reduction from linear-space ATM membership test, which is \(EXPTIME\)-c.
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\): Upper bound

Theorem

Given a DIDPDA \(A\) and an NFA \(B\), deciding whether or not \(L(A) \subseteq L(B)\) is in EXPTIME.

Proof.

\(L(A) \subseteq L(B) \) is equivalent to \(L(A) \cap L(B)^c = \emptyset \).

Complementing NFA can be done in EXPTIME.

Intersection between DIDPDA and NFA can be done in polynomial time in their sizes.

Testing emptiness on NIDPDA can also be done in polynomial time in its size.
Inclusion problems

Inclusion from (D)IDPDA to NFA: ATM

Definition (Alternating Turing Machine [Chandra1976])

An alternating Turing machine (ATM) $M = (Q, \Sigma, \delta, q_0, g)$ has:
- a set Q of states,
- a alphabet Σ,
- a transition function $\delta : Q \times \Sigma \rightarrow 2^{Q \times \Sigma \times \{L,R\}}$,
- a initial state $q_0 \in Q$,
- a type mapping function $g : Q \rightarrow \{\lor, \land, \text{accept, reject}\}$.
Definition (Accepting configuration)

A configuration \(C \) is *accepting* on an ATM \(M \) iff:

- \(C \) is on an accept state \((g = \text{accept}) \),
- \(C \) is on an existential state \((g = \lor) \) and one of its next configurations is accepting,
- \(C \) is on a universal state \((g = \land) \) and all of its next configurations are accepting.
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\): ATM

Definition (Computation tree)
A computation tree of a configuration \(C_1\) on an ATM \(M\) is a list of \(C_1\)'s possible accepting configurations, in a form of tree.

\[
(\lor, C_1) \\
(\land, C_2) \\
(\lor, C_3) \quad (\lor, C_4)
\]

Cheon et al. Relative distance problem between IDPDLs DLT 2019 19 / 34
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

Proof strategy for \(\text{EXPTIME}\) lower bound.
We prove it by using reduction from the membership test on a linear-space ATM with an input \(w\).

1. Encode the computation tree of the given input.
2. Construct an NFA \(B\) that rejects the strings matching with some valid criteria (defined later slides).
3. Construct an NIDPDA \(A\) that accepts the strings matching with other valid criteria.
4. Test if there exists an accepting computation in \(L(A) \cap L(B)^c\).

\[L(A) \cap L(B)^c = \emptyset \iff L(A) \subseteq L(B). \]
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

1. Encoding a computation tree into a string.

Encode such computation tree into a string:

\[
C_1(C_2^R C_3(\ldots)C_4(\ldots))
\]

Note that the underlined symbols and '(' are call symbols, and overlined symbols and ')' are return symbols.
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

1. Encoding a computation tree into a string.

\[C_1(C_2^R\$lC_3(\ldots)\$rC_4(\ldots)) \]

Valid conditions:

- The string encodes a tree (Its structure is valid).
- The initial configuration, \(C_1\), is \(q_0w\).
- The successive configurations are all valid.
- Every final configuration is accepting.
Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

2. Constructing an NFA.

The NFA accepts the strings that satisfy one of the following conditions:

- \(C_1\) is not the initial configuration,
- at least one of final configurations (that is followed by ‘\)’) is not an accepting configuration or
- one of computations \(C_1 \rightarrow C_2, C_2 \rightarrow C_3\) is invalid.
Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

2. Constructing an NFA.

Note that such NFA can have exactly one nondeterministic transition on all of its accepting computations.
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

2. Constructing an NFA.

\[w_1 w_2 \ldots w_{i-1} q w_i w_{i+1} \ldots \]
\[(\text{move L}) \]
\[w_1 w_2 \ldots q' w_{i-1} w'_i w_i w_{i+1} \ldots \]
\[(\text{move R}) \]
\[w_1 w_2 \ldots w_{i-1} w'_i q' w_i w_{i+1} \ldots \]

Since each transition changes at most three characters in sequence, it is enough to check their matching after \(n\) symbols using an NFA.
Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

3. Constructing an NIDPDA.
The NIDPDA accepts the string such that
- computation \(C_2 \rightarrow C_4\) is correct and
- it encodes a tree.
Inclusion problems

Inclusion from \((D)IDPDA\) to \(NFA\): Lower bound

4. Showing equivalence.

\[L(A) \cap L(B)^c = \emptyset \] means that the linear-space ATM does not accept the configuration \(C_1\).

\[L(A) \cap L(B)^c = \emptyset \iff L(A) \subseteq L(B), \] which is the inclusion problem.

Therefore, the problem is EXPTIME-hard.

\[\square \]

Theorem

Given an \((D)IDPDA \ A\) and an \(NFA \ B\), deciding whether \(L(A) \subseteq L(B)\) is EXPTIME-complete.
Inclusion problems

Inclusion from $DPDA$ to $DIDPDA$

Theorem

The problem is undecidable.

Proof.

Reduction from TM emptiness.

- For a Turing machine M, we can encode its computation in the form of $w_1 \# w_2^R \# \ldots$.
- The DPDA A checks that w_1 is initial and the transitions from even to odd configuration are valid.
- The DIDPDA B checks that the transitions from odd to even configuration are valid.
- $L(A) \cap L(B)$ is the set of all valid computations of M.
- $L(A) \cap L(B) = \emptyset \iff L(A) \subseteq L(B)^c$.
Inclusion problems

Inclusion from $DIDPDA$ to $DPDA$

Theorem

The problem is undecidable.

Proof.

Similar to the previous proof; swap the roles of DPDA and DIDPDA.

□
Overview

Backgrounds

Inclusion problems

Relative edit-distance problems
Relative edit-distance problem

Definition
Given two languages L_1 and L_2, a fixed integer $r \in \mathbb{N}$, the relative edit-distance problem is deciding whether or not $d_{rel}(L_1, L_2) \leq r$.
Relative problem from \textit{NIDPDA} to \textit{NFA}

\textbf{Theorem}

\textit{Given an (D)IDPDA} A \textit{and an (D)FA} B, \textit{the relative edit-distance problem from} $L(A)$ \textit{to} $L(B)$ \textit{is EXPTIME-complete.}

\textbf{Proof strategy}

- EXPTIME upper bound: Design the neighbourhood of $L(B)$.
- EXPTIME lower bound: Show a reduction from the inclusion problem from DIDPDA to NFA.
Relative problem from \textit{NIDPDA} to \textit{NFA}

Proof of EXPTIME upperbound.

1. We can construct an NFA B_r for the neighbourhood of $L(B)$ in polynomial time in the size of B. [NgRS15DLT; Povarov07]

2. $L(A) \subseteq L(B_r)$, which is the inclusion problem from an NIDPDA to an NFA, is EXPTIME-complete.

Therefore, the problem is decidable in EXPTIME.
Relative problem from \textit{NIDPDA} to \textit{NFA}

Proof of EXPTIME lowerbound.

1. On the previous reduction of the membership test on a linear-space ATM, we have a DIDPDA A and an NFA B.

2. Substitute the symbol of the nondeterministic transitions on B to a unique symbol to make the computation deterministic.

3. The language for DFA B_D has relative edit-distance 1 from $L(A)$, i.e. $d_{rel}(L(A), L(B_D)) \leq 1$.

Therefore, the problem is EXPTIME-hard. \square
Relative problem from \textit{NIDPDA} to \textit{NFA}

We have proved that

- given an NIDPDA A and an NFA B, the problem is EXPTIME,
- given a DIDPDA A and a DFA B, the problem is EXPTIME-hard.

Therefore, the relative edit-distance problem from an (D)IDPDA to an (D)FA is EXPTIME-complete.
Relative problem in \textit{NIDPDA}

\textbf{Theorem}

\textit{Given an NIDPDAs A and B, the relative edit-distance problem from $L(A)$ to $L(B)$ is EXPTIME-complete.}

\textbf{Proof strategy}

- EXPTIME upper bound: Design the neighbourhood of $L(B)$.
- EXPTIME lower bound: Reduction from the inclusion problem in NIDPDAs.
Neighbourhood of *NIDPDA*

We need to construct the radius r neighbourhood of an NIDPDA to show its upper bound.

Theorem

Let an NIDPDA A has n states and m stack symbols. The neighbourhood of $L(A)$ of radius 1 can be recognized by an NIDPDA B with $O(mn^2)$ states and $n + 1$ stack symbols.

Insertion and Deletion.

Due to Okhotin and Salomaa [OkhotinS19], we know that the neighbourhood automaton has $O(nm)$ states and $m + 1$ stack symbols.
Relative edit-distance problems

Neighbourhood of $NIDPDA$

Substitution of symbols of the same type.

- Make two copies Q_1 and \tilde{Q} of Q.
- Copy every transition from Q to Q_1.
- Add new transitions from Q_1 to \tilde{Q} according to the original transition.
Neighbourhood of \textit{NIDPDA}

Substitution from a call symbol to a local symbol.

- Make two copies \(Q_{2,1} \) of \(Q_1 \).
- Add new transitions from \(Q_1 \) to \(Q_{2,1} \times \Gamma \) by the substitution.

For other substitution cases between non-local and local, we use

- \(Q_{2,1} \times \Gamma \) for local to return.
- \(Q_{2,2} \times \Gamma_\perp \) for return to local or local to call, starts from \((s_{2,2}, \perp) \).
Neighbourhood of \textit{NIDPDA}

Substitution from a call symbol to a return symbol.

Since the difference of stack height before and after the substitution is 2, we use $Q_{3,1} \times \Gamma^2$ in this case.

For the case of substitution from a return to a call, we use $Q_{3,2} \times \Gamma^2_{\perp}$ instead of that.
Neighbourhood of \(NIDPDA \)

Construction summary.

The neighbourhood IDPDA \(B = (Q_B, \Sigma, \Gamma, \delta, I_B, F_B) \) consists of:

- \(Q_B = Q_1 \cup (Q_{2,1} \times \Gamma) \cup (Q_{2,2} \times \Gamma_\perp) \cup (Q_{3,1} \times \Gamma^2) \cup (Q_{3,2} \times \Gamma^2_\perp) \cup \tilde{Q}, \)
- \(I_B = \{ q_1, (q_{2,2}, \perp), (q_{3,2}, \perp\perp) \mid q \in I \}, \)
- \(F_B = \{ \tilde{q}, (q_{2,1}, \gamma), (q_{3,1}, \gamma\mu) \mid q \in F, \gamma, \mu \in \Gamma \}. \)

It uses \(O(nm^2) \) states and a new stack symbol \(\perp \).
Neighbourhood of $NIDPDA$

Theorem

Given an NIDPDA A with n states and m stack symbols, the radius r neighbourhood of $L(A)$ on edit-distance with fixed r has $n \cdot (m + r)^{2r}$ states, which is a polynomial with respect to the size of A.

Proof.

Iterating the previous construction for a neighbourhood IDPDA. □
Relative problem in \textit{NIDPDA}

\textbf{Theorem}

\textit{Given two NIDPDAs }A\textit{ and }B, the relative edit-distance problem from }$L(A)$\textit{ to }$L(B)$\textit{ is EXPTIME-complete.}

\textbf{Proof strategy}

\begin{itemize}
 \item EXPTIME upper bound: Design the neighbourhood of }$L(B)$\textit{.}
 \item EXPTIME lower bound: Reduction from the inclusion problem in NIDPDAs.
\end{itemize}
Relative problem in \textit{NIDPDA}

Proof of EXPTIME upperbound.

- The neighbourhood NIDPDA B_r has polynomially many states when we have a fixed r.
- The complement of B_r has an exponential number of states.

Therefore, the problem is decidable in EXPTIME.
Relative problem in \textit{NIDPDA}

Proof of EXPTIME lowerbound.

\begin{itemize}
 \item $d_{rel}(L(A), L(B)) \leq 0 \iff L(A) \subseteq L(B)$
 \item The inclusion problem between two NIDPDAs is EXPTIME-complete [Alur2004].
\end{itemize}

Therefore, the problem is EXPTIME-hard.
Relative problem in *NIDPDA*

We show that the relative distance problem between two NIDPDAs is both EXPTIME and EXPTIME-hard. Therefore, this problem is EXPTIME-complete.
Theorem

Given a DPDA A and a DIDPDA B, the relative edit-distance problem from $L(A)$ to $L(B)$ is undecidable.

Proof.

Due to the fact that the inclusion problem from DPDA to DIDPDA is undecidable.

□
Conclusion

What we have showed

We proved the inclusion problem

- from NFAs to NIDPDAs to be EXPTIME-complete,
- from NIDPDAs to NFAs to be EXPTIME-complete,
- between DPDAs and DIDPDAs to be undecidable.

We also showed the relative edit-distance problem

- from NIDPDAs to NFAs to be EXPTIME-complete,
- between two NIDPDAs to be EXPTIME-complete,
- from DPDAs to DIDPDAs to be undecidable.
Open problems

- The exact complexity of relative edit-distance problems without fixing r.
 - For instance of the relative problem between two NIDPDAs, its upper bound of complexity is 2EXPTIME on binary r by using the given proof.
- An approximation algorithm that computes the relative edit-distance between two languages efficiently.
- The relative edit-distance problem for other classes of languages.
Thank you
Normalizing an ATM computation tree

\[(\lor, C_1) \rightarrow (\lor, C_2) \rightarrow (\lor, C_3)\]

\[(\lor, C_1) \rightarrow (\land, C'_2) \rightarrow (\cdot, C''_2) \rightarrow (\lor, C_3)\]
Normalizing an ATM computation tree
Complete summary

<table>
<thead>
<tr>
<th>L_1 \ L_2</th>
<th>DFA</th>
<th>NFA</th>
<th>DIDPDA</th>
<th>IDPDA</th>
<th>DPDA</th>
<th>PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)FA</td>
<td>P</td>
<td></td>
<td>PSPACE-c.</td>
<td>P</td>
<td>P</td>
<td>Undec.</td>
</tr>
<tr>
<td>(D)IDPDA</td>
<td></td>
<td></td>
<td>EXPTIME-c.</td>
<td>Undec.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(D)PDA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The complexities of deciding $L_1 \subseteq L_2$.

<table>
<thead>
<tr>
<th>L_1 \ L_2</th>
<th>(D)FA</th>
<th>(D)IDPDA</th>
<th>(D)PDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>(D)FA</td>
<td>PSPACE-c.</td>
<td>EXPTIME-c.</td>
<td>Undec.</td>
</tr>
<tr>
<td>(D)IDPDA</td>
<td>EXPTIME-c.</td>
<td>Undec.</td>
<td></td>
</tr>
<tr>
<td>(D)PDA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The complexities of deciding $d_{rel}(L_1, L_2) \leq r$.

The complexities of deciding $d_{rel}(L_1, L_2) \leq r$.
